Publications by authors named "Zhengyan Lun"

Li-rich Mn-based layered (LMR) cathodes with anionic redox chemistry show great potential for next-generation sustainable Li-ion battery (LIB) applications due to the low cost and high energy density. However, the asynchronous structural evolutions with cycling in the heterogeneous composite structure of LMR lead to serious lattice strain and thus fast electrochemical decay, which hinders the commercialization of LMR cathodes. Here, an order-disorder coherent LMR cathode is demonstrated that exhibits a higher average voltage (by 0.

View Article and Find Full Text PDF

The pursuit of advanced battery chemistries with enhanced energy density necessitates the exploration of new materials, a process intricately tied to synthesis science. Despite the promise of O3-type sodium oxygen anionic redox cathodes as high-capacity materials, their development has been severely hindered by a lack of understanding regarding synthetic mechanisms. Here, we elucidate the pivotal role of atmospheric conditions, particularly oxygen content, in the synthesis of such materials by synchronizing multiple operando characterization techniques to monitor changes in both solid and gaseous components.

View Article and Find Full Text PDF

Rationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over-stoichiometric rocksalt (ORX) compounds, characterized by their face-sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over-stoichiometric rocksalt Li-In-Sn-O (o-LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated.

View Article and Find Full Text PDF

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction.

View Article and Find Full Text PDF

Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube.

View Article and Find Full Text PDF

Lithium-rich cathodes are promising energy storage materials due to their high energy densities. However, voltage hysteresis, which is generally associated with transition metal migration, limits their energy efficiency and implementation in practical devices. Here we reveal that voltage hysteresis is related to the collective migration of metal ions, and that isolating the migration events from each other by creating partial disorder can create high-capacity reversible cathode materials, even when migrating transition metal ions are present.

View Article and Find Full Text PDF

The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called "beyond Li-ion" technologies.

View Article and Find Full Text PDF
Article Synopsis
  • High-entropy ceramics are a new type of material with many different components, offering flexibility and potential for various applications like energy storage and catalysts.
  • Researchers found that using more transition metal species in lithium-ion battery cathodes improves performance, increasing energy density and rate capability even while keeping total metal content constant.
  • A specific high-entropy cathode containing six transition metals demonstrated high energy storage capacity, achieving 307 mAh/g at a low discharge rate and maintaining over 170 mAh/g at a high discharge rate, while a successful compound with 12 transition metals was developed as proof of concept.
View Article and Find Full Text PDF

There is an urgent need for low-cost, resource-friendly, high-energy-density cathode materials for lithium-ion batteries to satisfy the rapidly increasing need for electrical energy storage. To replace the nickel and cobalt, which are limited resources and are associated with safety problems, in current lithium-ion batteries, high-capacity cathodes based on manganese would be particularly desirable owing to the low cost and high abundance of the metal, and the intrinsic stability of the Mn oxidation state. Here we present a strategy of combining high-valent cations and the partial substitution of fluorine for oxygen in a disordered-rocksalt structure to incorporate the reversible Mn/Mn double redox couple into lithium-excess cathode materials.

View Article and Find Full Text PDF

N-doped graphene has become an important support for Pd in both hydrogen storage and catalytic reactions. The molecular orbitals of carbon materials (including graphene, fullerene, and small carbon clusters) and those of the supported Pd species will hybrid much stronger as N dopants are introduced, owing to the increased electrostatic attraction at the interface. This enhances the carbon substrates' catching force for the supported Pd, preventing its leaching and aggregation in many practical applications.

View Article and Find Full Text PDF