Inositol phosphates, common phosphorus storage compounds that are also crucial for eukaryotic cell signaling, constitute a significant portion of dissolved organic phosphorus in coastal waters. The hydrolysis of inositol phosphates could be an important contributor to phosphorus cycling in phosphorus-limited marine ecosystems, yet this process remains poorly understood in marine contexts. In this study, we reveal substantial concentrations of inositol phosphates in marine macrophytes, including green, brown, and red algae as well as common seagrasses, suggesting that these organisms are likely major biological sources of inositol phosphates in the oceans.
View Article and Find Full Text PDFβ-1,3-xylan, typically found in marine algae as a major cell wall polysaccharide, represents an overlooked pool of organic carbon in global oceans. Whilst our understanding of microbial catabolism of xylans has improved significantly, particularly from biotransformations of terrestrial plant biomass that are typically composed of β-1,4-xylans, knowledge on how microbes utilize β-1,3-xylan remains limited. Here, we describe the discovery of a complete pathway for β-1,3-xylan catabolism and its regulation in a marine bacterium, Vibrio sp.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities.
View Article and Find Full Text PDFSci Total Environ
October 2024
Environ Microbiol
July 2023
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases.
View Article and Find Full Text PDFD-glutamate (D-Glu) is an essential component of bacterial peptidoglycans, representing an important, yet overlooked, pool of organic matter in global oceans. However, little is known on D-Glu catabolism by marine microorganisms. Here, a novel catabolic pathway for D-Glu was identified using the marine bacterium Pseudoalteromonas sp.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota.
View Article and Find Full Text PDFAlthough the S8 family in the MEROPS database contains many peptidases, only a few S8 peptidases have been applied in the preparation of bioactive oligopeptides. Bovine bone collagen is a good source for preparing collagen oligopeptides, but has been so far rarely applied in collagen peptide preparation. Here, we characterized a novel S8 gelatinase, Aa2_1884, from marine bacterium SM1988, and evaluated its potential application in the preparation of collagen oligopeptides from bovine bone collagen.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2022
As the most abundant d-amino acid (DAA) in the ocean, d-alanine (d-Ala) is a key component of peptidoglycan in the bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of d-Ala through the microbial food web remain largely unknown. In this study, the metabolism of d-Ala by marine bacterium sp.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2022
Dimethylsulfoniopropionate (DMSP) is one of the most abundant organic sulfur compounds in the oceans, which is mainly degraded by bacteria through two pathways, a cleavage pathway and a demethylation pathway. Its volatile catabolites dimethyl sulfide (DMS) and methanethiol (MT) in these pathways play important roles in the global sulfur cycle and have potential influences on the global climate. Intense DMS/DMSP cycling occurs in the Arctic.
View Article and Find Full Text PDFNat Microbiol
November 2021
Cleavage of dimethylsulfoniopropionate (DMSP) can deter herbivores in DMSP-producing eukaryotic algae; however, it is unclear whether a parallel defence mechanism operates in marine bacteria. Here we demonstrate that the marine bacterium Puniceibacterium antarcticum SM1211, which does not use DMSP as a carbon source, has a membrane-associated DMSP lyase, DddL. At high concentrations of DMSP, DddL causes an accumulation of acrylate around cells through the degradation of DMSP, which protects against predation by the marine ciliate Uronema marinum.
View Article and Find Full Text PDFBackground: Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth's surface, contribute significantly to the global oceanic DMS sea-air flux.
View Article and Find Full Text PDFFront Microbiol
September 2021
Dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are widespread in marine environment, and are important participants in the global sulfur cycle. Microbiol oxidation of DMS to DMSO represents a major sink of DMS in marine surface waters. The SAR11 clade and the marine clade (MRC) are the most abundant heterotrophic bacteria in the ocean surface seawater.
View Article and Find Full Text PDFCollagens from marine animals are an important component of marine organic nitrogen. Collagenase-producing bacteria and their collagenases play important roles in collagen degradation and organic nitrogen recycling in the ocean. However, only a few collagenase-producing marine bacteria have been so far discovered.
View Article and Find Full Text PDF