Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking model. They are characterized by topological boundary modes that remain stable under symmetry respecting perturbations. In clean, gapped systems without disorder, the stability of these edge modes is restricted to the zero-temperature manifold; at finite temperatures, interactions with mobile thermal excitations lead to their decay.
View Article and Find Full Text PDFThe transition from quantum to classical behavior is a central question in modern physics. How can we rationalize everyday classical observations from an inherently quantum world? Quantum Darwinism offers a compelling framework to explain this by proposing that the environment redundantly encodes information about a quantum system, leading to the objective reality. Here, by leveraging cutting-edge superconducting quantum circuits, we observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information, establishing a robust verification of quantum Darwinism and the underlying geometric structure of quantum states.
View Article and Find Full Text PDFPhys Rev Lett
January 2025
The spectral form factor (SFF) captures universal spectral fluctuations as signatures of quantum chaos, and has been instrumental in advancing multiple frontiers of physics including the studies of black holes and quantum many-body systems. The measurement of the SFF in many-body systems is however challenging due to the difficulty in resolving level spacings that become exponentially small with increasing system size. Here, we utilize the random measurement toolbox to perform a direct experimental measurement of the SFF, and hence probe the presence or absence of chaos in quantum many-body systems on superconducting quantum processors.
View Article and Find Full Text PDFNat Commun
February 2025
Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states.
View Article and Find Full Text PDFNat Commun
October 2024
The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes.
View Article and Find Full Text PDF