Publications by authors named "Zachary D Travis"

The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS).

View Article and Find Full Text PDF

Blood-brain barrier (BBB) disruption is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the BBB disruption property of secreted protein acidic and rich in cysteine (SPARC) after SAH. A total of 197 rats underwent endovascular perforation to induce SAH or sham operation.

View Article and Find Full Text PDF

Hematoma clearance is an important therapeutic target to improve outcome following intracerebral hemorrhage (ICH). Recent studies showed that Neurokinin receptor-1 (NK1R) inhibition exerts protective effects in various neurological disease models, but its role in ICH has not been explored. The objective of this study was to investigate the role of NK1R and its relation to hematoma clearance after ICH using an autologous blood injection mouse model.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease. Neuronal apoptosis plays an important pathological role in early brain injury after SAH. Galanin receptor 1 (GalR1) activation was recently shown to be anti-apoptotic in the setting of ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • A 31-year-old woman experienced severe headaches, double vision, and vision loss due to a ruptured intracranial cyst, despite no prior medical history.
  • Initial treatment by draining a subdural hygroma only minimally improved her condition while still showing high intracranial pressure (ICP).
  • Further examination uncovered transverse sinus stenosis, which required stenting, leading to a significant decrease in ICP and symptom relief, highlighting the importance of thorough medical evaluations for complex cases.
View Article and Find Full Text PDF

Stroke is a devastating disease that occurs when a blood vessel in the brain is either blocked or ruptured, consequently leading to deficits in neurological function. Stroke consistently ranked as one of the top causes of mortality, and with the mean age of incidence decreasing, there is renewed interest to seek novel therapeutic treatments. The Scavenger Receptor Class B type 1 (SR-B1) is a multifunctional protein found on the surface of a variety of cells.

View Article and Find Full Text PDF

Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • Brain edema significantly contributes to early brain injury and poor outcomes after subarachnoid hemorrhage (SAH), leading to longer hospital stays.
  • Research indicates that Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a protective role against brain edema and provides neurological benefits following SAH.
  • Employing specific inhibitors and CRISPR methods showed that PACAP signaling via the PAC1 receptor involves the AC-cAMP-PKA pathway, which helps reduce edema-related proteins, presenting PACAP as a potential treatment for SAH.
View Article and Find Full Text PDF

Stroke is one of the leading causes of mortality and morbidity worldwide. The bloodbrain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system.

View Article and Find Full Text PDF

: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation.

View Article and Find Full Text PDF

The activation of C-C chemokine receptor type 1 (CCR1) has been shown to be pro-inflammatory in several animal models of neurological diseases. The objective of this study was to investigate the activation of CCR1 on neuroinflammation in a mouse model of intracerebral hemorrhage (ICH) and the mechanism of CCR1/tetratricopeptide repeat 1 (TPR1)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway in CCR1-mediated neuroinflammation. Adult male CD1 mice (n = 210) were used in the study.

View Article and Find Full Text PDF

Neuroinflammation plays a vital role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The hypothesis of this study was that activation of melanocortin 1 receptor (MC1R) with BMS-470539 attenuates EBI by suppression of neuroinflammation after SAH. We utilized BMS-470539, MSG-606, and MRT-68601 to verify the neuroprotective effects of MC1R.

View Article and Find Full Text PDF

CD200 is widely distributed in the central nervous system and plays an essential role in the immune response in neurological diseases. However, little is currently known about the effects of CD200 signaling on the blood-brain barrier (BBB) function after intracerebral hemorrhage (ICH). In this study, the role of CD200 during ICH in an autologous blood induced mouse ICH model was investigated.

View Article and Find Full Text PDF

Neuronal apoptosis is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the anti-apoptotic property of fibroblast growth factor (FGF)-2 after SAH in rats. A total of 289 rats underwent endovascular perforation to induce SAH or sham operation.

View Article and Find Full Text PDF

Understanding the origin and maintenance of phenotypic variation, particularly across a continuous spatial distribution, represents a key challenge in evolutionary biology. For this, animal venoms represent ideal study systems: they are complex, variable, yet easily quantifiable molecular phenotypes with a clear function. Rattlesnakes display tremendous variation in their venom composition, mostly through strongly dichotomous venom strategies, which may even coexist within a single species.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high mortality and disabilities. Retinoid X receptor (RXR) has been shown to be neuroprotective against ischemia/reperfusion injury. This study aimed to investigate the effects of the selective RXR agonist bexarotene on neuroinflammation in a rat model of SAH.

View Article and Find Full Text PDF

Background And Purpose: Mitochondrial dysfunction is involved in the mechanism of early brain injury (EBI) following subarachnoid hemorrhage (SAH). Blood-brain barrier disruption is a devastating outcome in the early stage of SAH. In this study, we aimed to investigate the role of a mitochondria-related drug Mitoquinone (MitoQ) in blood-brain barrier disruption after SAH in rats.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate oxidative stress and neuronal apoptosis after SAH remains unknown.

View Article and Find Full Text PDF