Publications by authors named "Yonit Tsatskis"

Female germ cells must preserve the integrity of their genome and generate genetic diversity via meiotic recombination. This challenging process, which occurs during fetal life, is error prone. Highly conserved checkpoint pathways detect errors in recombination and DNA damage, inducing the death of defective oocytes.

View Article and Find Full Text PDF

The conserved atypical cadherin fat (ft) controls cellular processes such as growth, planar cell polarity, and mitochondrial function, in organisms ranging from fruit flies to mammals. Working at the apical-junctional plasma membrane the intracellular domain of the Ft protein, FtICD, binds to and regulates components of the Hippo and PCP pathways. Unexpectedly, we show that FtICD is present in the nucleus in cultured cells as well as in embryonic and larval tissues, and identify nuclear localization and nuclear export signals in FtICD required for this localization.

View Article and Find Full Text PDF

The large Drosophila protocadherin Fat (Ft) is a receptor for signal transduction pathways that control growth (Hippo signaling), planar cell polarity (PCP), metabolism and the proximodistal patterning of appendages. The intracellular domain (ICD) of Ft is crucial in implementing its biological functions. Six regions of high conservation (named A-F) within the ICD have been identified, as well as distinct regions mediating Hippo pathway activity that have been functionally characterized via transgenic expression rescue assays.

View Article and Find Full Text PDF

Nuclear envelope membrane proteins (NEMPs) are a conserved family of nuclear envelope (NE) proteins that reside within the inner nuclear membrane (INM). Even though Nemp1 knockout (KO) mice are overtly normal, they display a pronounced splenomegaly. This phenotype and recent reports describing a requirement for NE openings during erythroblasts terminal maturation led us to examine a potential role for Nemp1 in erythropoiesis.

View Article and Find Full Text PDF

Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in () with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in , , zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line.

View Article and Find Full Text PDF

Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed.

View Article and Find Full Text PDF

Mutations in human , a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. () mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets.

View Article and Find Full Text PDF

Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells.

View Article and Find Full Text PDF

Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation.

View Article and Find Full Text PDF

Protein ProP acts as an osmosensory transporter in diverse bacteria. C-Terminal residues 468-497 of Escherichia coli ProP (ProPEc) form a four-heptad homodimeric alpha-helical coiled coil. Arg 488, at a core heptad a position, causes it to assume an antiparallel orientation.

View Article and Find Full Text PDF

Background: The tight control of cell proliferation and cell death is essential to normal tissue development, and the loss of this control is a hallmark of cancers. Cell growth and cell death are coordinately regulated during development by the Hippo signaling pathway. The Hippo pathway consists of the Ste20 family kinase Hippo, the WW adaptor protein Salvador, and the NDR kinase Warts.

View Article and Find Full Text PDF

Transporter ProP of Escherichia coli (ProPEc) senses extracellular osmolality and mediates osmoprotectant uptake when it is rising or high. A replica of the ProPEc C terminus (Asp468-Arg497) forms an intermolecular alpha-helical coiled-coil. This structure is implicated in the osmoregulation of intact ProPEc, in vivo.

View Article and Find Full Text PDF