Plants deploy a diverse array of pattern recognition receptors (PRRs), which perceive microbe-associated molecular patterns to activate immune responses. Leucine-rich repeat receptor-like kinase subgroup XII (LRR-RLK-XII) represents one of the largest PRR families owing to lineage-specific diversification. Through bioinformatics and synthetic biology approaches, we characterized LRR-RLK-XIIs from 285 plant species and identified a receptor, "SCORE," that perceives cold shock protein (CSP) peptides.
View Article and Find Full Text PDFPlant-parasitic nematodes (PPNs) cause major agricultural losses worldwide, yet the molecular basis of plant immunity against these pathogens remains poorly understood. To investigate how plants recognize PPNs, we aimed to identify microbe-associated molecular patterns (MAMPs) from nematodes and the corresponding plant immune components. Because of the limited availability of material from obligate PPNs, we used , a free-living nematode, as a MAMP source.
View Article and Find Full Text PDFCell-surface receptors play pivotal roles in many biological processes, including immunity, development, and reproduction, across diverse organisms. How cell-surface receptors evolve to become specialised in different biological processes remains elusive. To shed light on the immune-specificity of cell-surface receptors, we analyzed more than 200,000 genes encoding cell-surface receptors from 350 genomes and traced the evolutionary origin of immune-specific leucine-rich repeat receptor-like proteins (LRR-RLPs) in plants.
View Article and Find Full Text PDFPerception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) are among the most devastating pests in agriculture. Sw. (Turkey berry) has been used as a rootstock for eggplant (aubergine) cultivation because of its resistance to RKNs, including and .
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses.
View Article and Find Full Text PDFEnzyme biosensors are useful tools that can monitor rapid changes in metabolite levels in real-time. However, current approaches are largely constrained to metabolites within a limited chemical space. With the rising development of artificial metalloenzymes (ArM), a unique opportunity exists to design biosensors from the ground-up for metabolites that are difficult to detect using current technologies.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2020
Plant resistance inducers (PRIs) are compounds that protect plants from diseases by activating immunity responses. Exogenous treatment with glutamate (Glu), an important amino acid for all living organisms, induces resistance against fungal pathogens in rice and tomato. To understand the molecular mechanisms of Glu-induced immunity, we used the model system.
View Article and Find Full Text PDFhas been utilized for both transient and stable transformations of plants. These transformation methods have been used in fields such as breeding GM crops, protein production in plant cells, and the functional analysis of genes. However, some plants have significantly lower transient gene transfer and stable transformation rates, creating a technical barrier that needs to be resolved.
View Article and Find Full Text PDFPlant-parasitic nematodes (PPNs), such as root-knot nematodes (RKNs) and cyst nematodes (CNs), are among the most devastating pests in agriculture. RKNs and CNs induce redifferentiation of root cells into feeding cells, which provide water and nutrients to these nematodes. Plants trigger immune responses to PPN infection by recognizing PPN invasion through several different but complementary systems.
View Article and Find Full Text PDFIn Extended Data Fig. 5d of this Letter, the blots for anti-pS612 and anti-BAK1 were inadvertently duplicated. This figure has been corrected online.
View Article and Find Full Text PDFPlant immunity consists of two arms: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), induced by surface-localized receptors, and effector-triggered immunity (ETI), induced by intracellular receptors. Despite the little structural similarity, both receptor types activate similar responses with different dynamics. To better understand phosphorylation events during ETI, we employed a phosphoproteomic screen using an inducible expression system of the bacterial effector avrRpt2 in Arabidopsis thaliana, and identified 109 differentially phosphorylated residues of membrane-associated proteins on activation of the intracellular RPS2 receptor.
View Article and Find Full Text PDFMulticellular organisms use cell-surface receptor kinases to sense and process extracellular signals. Many plant receptor kinases are activated by the formation of ligand-induced complexes with shape-complementary co-receptors. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat receptor kinases (LRR-RKs) to control immunity, growth and development.
View Article and Find Full Text PDFGenome Announc
June 2018
Root-knot nematodes ( spp.) cause serious damage to many crops globally. We report the high-quality genome sequence of genotype A2-O.
View Article and Find Full Text PDFCurr Opin Plant Biol
August 2018
Virulence factors are molecules that enable plant pathogens to infect and colonize host tissues successfully. These molecules co-evolve with host genes to ensure functionality and to avoid recognition by the host immune system. Some pathogens also produce the plant growth hormone cytokinin (CK) and other plant hormones that contribute to virulence without being subjected to the molecular arms race.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs.
View Article and Find Full Text PDFPlant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions.
View Article and Find Full Text PDFMembrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications.
View Article and Find Full Text PDFPathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception.
View Article and Find Full Text PDF