Publications by authors named "Xue Qun Chen"

Although intracerebral hemorrhage (ICH) and cerebral small vessel disease (cSVD) have long been considered distinct clinical entities, emerging evidence reveals significant overlap in their etiologies and imaging markers. This review aims to explore the relationship between ICH and cSVD, suggesting that ICH may represent an acute manifestation of small vessel disease. ICH is primarily caused by cerebral amyloid angiopathy and hypertension, while cSVD is mainly attributed to cerebral amyloid angiopathy and arteriolosclerosis.

View Article and Find Full Text PDF

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • The salivary glands produce saliva, which serves multiple important functions such as aiding in digestion, protecting oral mucosa, and modulating immune responses.
  • Saliva secretion is regulated by the central nervous system in response to various stimuli like taste, smell, and chewing, with different neurotransmitters influencing the process.
  • Recent studies highlight the salivary glands' roles in immunity and endocrinology, identifying potential biomarkers in saliva that could help in diagnosing oral and systemic diseases.
View Article and Find Full Text PDF

Hypothalamus-pituitary-adrenal (HPA) axis plays critical roles in stress responses under challenging conditions such as hypoxia, regulating gene expression and integrating activities of hypothalamus-pituitary-targets cells. However, the transcriptional regulatory mechanisms and signaling pathways of hypoxic stress in the pituitary remain to be defined. Here, we report that hypoxia induced dynamic changes in the transcription factors, hormones, and their receptors in the adult rat pituitary.

View Article and Find Full Text PDF

Somatostatin (SST) and somatostatin receptors (SSTRs) play an important role in the brain and gastrointestinal (GI) system. SST is produced in various organs and cells, and the inhibitory function of somatostatin-containing cells is involved in a range of physiological functions and pathological modifications. The GI system is the largest endocrine organ for digestion and absorption, SST-endocrine cells and neurons in the GI system are a critical effecter to maintain homeostasis SSTRs 1-5 and co-receptors, while SST-SSTRs are involved in chemo-sensory, mucus, and hormone secretion, motility, inflammation response, itch, and pain the autocrine, paracrine, endocrine, and exoendocrine pathways.

View Article and Find Full Text PDF

The common understanding of p53 function is a genome guardian, which is activated by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest. Increasing evidence has demonstrated p53 new cellular functions involved in abundant endocrine and metabolic response for maintaining homeostasis. However, is frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an "evil" cancer-assistant.

View Article and Find Full Text PDF

Hypoxia upregulates hypothalamic corticotrophin releasing hormone (CRH) and its receptor type-1 (CRHR1) expression and activates the HPA axis and induces hypoxic sickness and behavioral change. The transcriptional mechanism by which hypoxia differently regulates CRHR1 expression remains unclear. Here we report hypoxia time-dependently induced biphasic expression of CRHR1mRNA in rat pituitary during different physiological status.

View Article and Find Full Text PDF

Background: High-altitude cerebral edema (HACE) is the severe type of acute mountain sickness (AMS) and life threatening. A subclinical inflammation has been speculated, but the exact mechanisms underlying the HACE are not fully understood.

Methods: Human volunteers ascended to high altitude (3860 m, 2 days), and rats were exposed to hypoxia in a hypobaric chamber (5000 m, 2 days).

View Article and Find Full Text PDF

Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically.

View Article and Find Full Text PDF

Prenatal stress (PNS) is associated with increased biological risk for mental disorders such as anxiety and depression later in life, and stress appear to be additive to the PNS influences. Among the most widely cited and accepted alternative hypotheses of anxiety and depression is dysfunction of the HPA axis, a system that is central in orchestrating the stress response. Therefore, understanding how PNS exerts profound effects on the HPA axis and stress-sensitive brain functions including anxiety and depression has significant clinical importance.

View Article and Find Full Text PDF

We have shown that hypoxia reduces plasma insulin, which correlates with corticotropin-releasing hormone (CRH) receptor 1 (CRHR1) in rats, but the mechanism remains unclear. Here, we report that hypobaric hypoxia at an altitude of 5,000 m for 8 h enhances rat plasma CRH, corticosterone, and glucose levels, whereas the plasma insulin and pancreatic ATP/ADP ratio is reduced. In islets cultured under normoxia, CRH stimulated insulin release in a glucose- and CRH-level-dependent manner by activating CRHR1 and thus the cAMP-dependent protein kinase pathway and calcium influx through L-type channels.

View Article and Find Full Text PDF

Objectives: To investigate whether CRHR1 and CRHR2 are colocalized in CRH-specific neurons in rat brain.

Methods: Double/triple immunofluorescence, and combined in situ hybridization were performed in the PVN, amygdala and hippocampus, and triple immunofluorescence was applied to the median eminence (ME), dorsal raphe (DR) and locus coeruleus (LC).

Results: Both CRHR1 and CRHR2 immunoreactivity were highly coexpressed in the PVN, central nucleus of the amygdala (CeA) and hippocampus.

View Article and Find Full Text PDF

Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1.

View Article and Find Full Text PDF

Mutational changes in p53 correlate well with tumorigenesis. Remarkably, however, relatively little is known about the role that p53 variations may play in environmental adaptation. Here we report that codon asparagine-104 (104N) and glutamic acid-104 (104E), respectively, of the p53 gene in the wild zokor (Myospalax baileyi) and root vole (Microtus oeconomus) are adaptively variable, meeting the environmental stresses of the Tibetan plateau.

View Article and Find Full Text PDF

High-altitude hypoxia can induce physiological dysfunction and mountain sickness, but the underlying mechanism is not fully understood. Corticotrophin-releasing factor (CRF) and CRF type-i receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors. We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time- and dose-dependent manner, impaired or improved learning and memory, and anxiety-like behavioral change.

View Article and Find Full Text PDF

We have previously reported that hypoxia activates corticotrophin-releasing hormone (CRH) and the expression of its type-1 receptor (CRHR1) and induces disorders of the brain-endocrine-immune network. p53 is activated by hypoxia and involved in tumorigenesis and apoptosis. Whether CRHR1 regulates p53 transactivation to further influence apoptotic genes remains unclear.

View Article and Find Full Text PDF