Publications by authors named "Xinzhao Xu"

Artificial synaptic devices that mimic neuromorphic signal processing hold great promise for bioelectronic interfaces. However, most systems remain limited to physical stimuli or electroactive small molecules, lacking the ability to transduce biologically relevant protein signals. To address this limitation, an aptamer-mediated aqueous artificial synaptic transistor is developed capable of selectively responding to the interleukin-6 (IL-6) signal, a specifically expressed protein of inflammatory stress, via gate-voltage-induced synaptic modulation in biologically relevant electrolyte environments.

View Article and Find Full Text PDF

One of the ultimate goals of artificial intelligence is to achieve the capability of memory evolution and adaptability to changing environments, which is termed adaptive memory. To realize adaptive memory in artificial neuromorphic devices, artificial synapses with multi-sensing capability are required to collect and analyze various sensory cues from the external changing environments. However, due to the lack of platforms for mediating multiple sensory signals, most artificial synapses have been mainly limited to unimodal or bimodal sensory devices.

View Article and Find Full Text PDF

The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non-electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose.

View Article and Find Full Text PDF

Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated.

View Article and Find Full Text PDF

Grain size can have significant effects on the properties of electroceramics for dielectric, piezoelectric, and ferroelectric applications. Here, we systematically investigate the effect of grain size on the structure and properties of Mn-modified 0.67BiFeO-0.

View Article and Find Full Text PDF

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets.

View Article and Find Full Text PDF

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets.

View Article and Find Full Text PDF

We present the synthesis of metal nanowires in a multiplexed device configuration using single-walled carbon nanotubes (SWNTs) as nanoscale vector templates. The SWNT templates control the dimensionality of the wires, allowing precise control of their size, shape, and orientation; moreover, a solution-processable approach enables their linear deposition between specific electrode pairs in electronic devices. Electrical characterization demonstrated the successful fabrication of metal nanowire electronic devices, while multiscale characterization of the different fabrication steps revealed details of the structure and charge transfer between the material encapsulated and the carbon nanotube.

View Article and Find Full Text PDF

Here we report on the fabrication of reconfigurable and solution processable nanoscale biosensors with multisensing capability, based on single-walled carbon nanotubes (SWCNTs). Distinct DNA-wrapped (hence water-soluble) CNTs were immobilized from solution onto different prepatterned electrodes on the same chip, via a low-cost dielectrophoresis (DEP) methodology. The CNTs were functionalized with specific, and different, aptamer sequences that were employed as selective recognition elements for biomarkers indicative of stress and neuro-trauma conditions.

View Article and Find Full Text PDF

The impact of hydraulic retention time (HRT) in an anaerobic baffled reactor (ABR) on its operation performance and granular sludge characteristics was investigated through both testing its operation and analyzing the particle size distribution (PSD) and fractal dimensions of these sludge granules when treating low-strength wastewater. As HRT was gradually reduced from 24 h to 5 h, ABR had good performance on the organics removal and could reach about 90% for the COD removal, the VFA contents in ABR effluent and their pH values showed opposite trends. Most COD in wastewater was removed in the first two compartments of ABR during the running period of HRT from 24 h to 12 h, after that, the middle three compartments in ABR performed the most removal work.

View Article and Find Full Text PDF