Publications by authors named "Xiao-Quan Yu"

Pseudomonas aeruginosa, a key member of the ESKAPE pathogen group, is a common cause of urinary tract infections (UTIs), particularly in patients with indwelling urinary catheters. Due to its large genome, P. aeruginosa has a high potential for genetic mutations, enabling the development of multidrug resistance.

View Article and Find Full Text PDF

Flavonoids, a major component of plant root exudates, play a crucial role in mediating plant-microbe interactions. However, the mechanisms by which flavonoids are perceived and trigger downstream signaling events in microbes remain largely unknown. In this study, we characterized AefR, a flavonoid-sensing transcriptional regulator from 2P24, a plant growth-promoting rhizobacterium (PGPR) known for its biocontrol properties.

View Article and Find Full Text PDF

Antibiotic resistance is emerging as a significant global health crisis, necessitating the urgent development of novel antibiotics or alternative therapies. Although it is recognized that bacteria require multiple mutations to develop resistance levels exceeding the mutant prevention concentration, the specific mutation combinations conferring high resistance have been largely undefined. Here, we investigated the multi-step evolution of fluoroquinolone resistance in through experimental evolution and whole-genome sequencing coupled with proteomic approaches.

View Article and Find Full Text PDF

Type II toxin-antitoxin systems are highly prevalent in bacterial genomes and play crucial roles in the general stress response. Previously, we demonstrated that the type II antitoxin PfMqsA regulates biofilm formation through the global regulator AgtR in . Here, we found that both the C-terminal DNA-binding domain of PfMqsA and AgtR are involved in bacterial antibiotic susceptibility.

View Article and Find Full Text PDF

Acyl-homoserine lactone (AHL) is the most studied autoinducer in gram-negative bacteria controlling infections of various pathogens. Quenching of AHL signaling by inhibiting AHL synthesis or AHL-receptor binding via small molecular chemicals or enzymatically degrading AHL is commonly used to block bacterial infections. Here, we describe a new quorum-quenching strategy that directly "acquires" bacterial genes/proteins through a defined platform.

View Article and Find Full Text PDF

Although drinking water disinfection proved to be an effective strategy to eliminate many pathogens, bacteria can still show disinfection tolerance in drinking water distribution systems. To date, the molecular mechanisms on how environmental stress affects the tolerance of Pseudomonas aeruginosa to monochloramine are not well understood. Here, we investigated how three stress conditions, namely starvation, low temperature, and starvation combined with low temperature, affected the monochloramine tolerance of Pseudomonas aeruginosa, an opportunistic pathogen commonly found in drinking water distribution systems.

View Article and Find Full Text PDF

Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump.

View Article and Find Full Text PDF

In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization.

View Article and Find Full Text PDF