Sorafenib is an antiangiogenic and antiproliferative chemotherapeutic drug that plays a crucial role in the treatment of patients with advanced hepatocellular carcinoma (HCC). However, resistance to sorafenib greatly limits its therapeutic efficacy. This highlights the importance of determining the mechanisms underlying resistance to antiangiogenic therapy.
View Article and Find Full Text PDFObjective: This study aimed to construct a novel model, Multi-Spatial Attention U-Net (MSAU-Net) by incorporating our proposed Multi-Spatial Attention (MSA) block into the U-Net for the automated segmentation of the gallbladder on CT images.
Methods: The gallbladder dataset consists of CT images of retrospectively-collected 152 liver cancer patients and corresponding ground truth delineated by experienced physicians. Our proposed MSAU-Net model was transformed into two versions V1(with one Multi-Scale Feature Extraction and Fusion (MSFEF) module in each MSA block) and V2 (with two parallel MSEFE modules in each MSA blcok).
Type IIA topoisomerase (TOP2A) is upregulated in hepatocellular carcinoma (HCC) and its expression is positively correlated with poor prognosis. However, the underlying molecular mechanism of this connection are poorly understood. Hence, the present work aimed to examine the possible mechanisms which may be useful in identifying a potential therapeutic strategy.
View Article and Find Full Text PDF