A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-spatial-attention U-Net: a novel framework for automated gallbladder segmentation on CT images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aimed to construct a novel model, Multi-Spatial Attention U-Net (MSAU-Net) by incorporating our proposed Multi-Spatial Attention (MSA) block into the U-Net for the automated segmentation of the gallbladder on CT images.

Methods: The gallbladder dataset consists of CT images of retrospectively-collected 152 liver cancer patients and corresponding ground truth delineated by experienced physicians. Our proposed MSAU-Net model was transformed into two versions V1(with one Multi-Scale Feature Extraction and Fusion (MSFEF) module in each MSA block) and V2 (with two parallel MSEFE modules in each MSA blcok). The performances of V1 and V2 were evaluated and compared with four other derivatives of U-Net or state-of-the-art models quantitatively using seven commonly-used metrics, and qualitatively by comparison against experienced physicians' assessment.

Results: MSAU-Net V1 and V2 models both outperformed the comparative models across most quantitative metrics with better segmentation accuracy and boundary delineation. The optimal number of MSA was three for V1 and two for V2. Qualitative evaluations confirmed that they produced results closer to physicians' annotations. External validation revealed that MSAU-Net V2 exhibited better generalization capability.

Conclusion: The MSAU-Net V1 and V2 both exhibited outstanding performance in gallbladder segmentation, demonstrating strong potential for clinical application. The MSA block enhances spatial information capture, improving the model's ability to segment small and complex structures with greater precision. These advantages position the MSAU-Net V1 and V2 as valuable tools for broader clinical adoption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125801PMC
http://dx.doi.org/10.1186/s12880-025-01737-7DOI Listing

Publication Analysis

Top Keywords

msa block
12
gallbladder segmentation
8
multi-spatial attention
8
msau-net exhibited
8
msau-net
6
msa
5
multi-spatial-attention u-net
4
u-net novel
4
novel framework
4
framework automated
4

Similar Publications