Quantum teleportation provides a way to transmit unknown quantum states from one location to another. In the quantum world, multilevel systems which enable high-dimensional systems are more prevalent. Therefore, to completely rebuild the quantum states of a single particle remotely, one needs to teleport multilevel (high-dimensional) states.
View Article and Find Full Text PDFPhys Rev Lett
July 2020
Phys Rev Lett
November 2019
Nonclassical correlations can be regarded as resources for quantum information processing. However, the classification problem of nonclassical correlations for quantum states remains a challenge, even for finite-size systems. Although there exists a set of criteria for determining individual nonclassical correlations, a unified framework that is capable of simultaneously classifying multiple correlations is still missing.
View Article and Find Full Text PDFPhys Rev Lett
March 2019
Bell state measurements, of which the eigenvectors are in an entangled form, are crucial resources in the construction of quantum networks. Therefore, device-independent certification of a Bell state measurement has significance in the quantum information process because it satisfies the exact demand on security. In this study, we implement a proof-of-concept experiment to certify a Bell state measurement device independently in an entanglement swapping process, namely, self-testing.
View Article and Find Full Text PDFPhys Rev Lett
December 2018
Self-testing is a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. In particular, self-testing of entangled states is of great importance in quantum information processing. An understandable example is that the maximal violation of the Clauser-Horne-Shimony-Holt inequality necessarily implies that the bipartite system shares a singlet.
View Article and Find Full Text PDFOccupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. Nevertheless, only a few results are available to quantify steerability using analytical results.
View Article and Find Full Text PDFPhys Rev Lett
April 2017
Einstein-Podolsky-Rosen (EPR) steering describes the ability of one party to remotely affect another's state through local measurements. One of the most distinguishable properties of EPR steering is its asymmetric aspect. Steering can work in one direction but fail in the opposite direction.
View Article and Find Full Text PDFRecently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell's nonlocality. Among which, Bell's nonlocality is the strongest type. Bell's nonlocality for quantum states is usually detected by violation of some Bell's inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits.
View Article and Find Full Text PDFPhys Rev Lett
April 2016
Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. EPR steering exhibits a unique asymmetric property; i.e.
View Article and Find Full Text PDFWe demonstrate here that for a given mixed multi-qubit state if there are at least two observers for whom mutual Einstein-Podolsky-Rosen steering is possible, i.e. each observer is able to steer the other qubits into two different pure states by spontaneous collapses due to von Neumann type measurements on his/her qubit, then nonexistence of local realistic models is fully equivalent to quantum entanglement (this is not so without this condition).
View Article and Find Full Text PDFEinstein-Podolsky-Rosen (EPR) steering, a generalization of the original concept of "steering" proposed by Schrödinger, describes the ability of one system to nonlocally affect another system's states through local measurements. Some experimental efforts to test EPR steering in terms of inequalities have been made, which usually require many measurement settings. Analogy to the "all-versus-nothing" (AVN) proof of Bell's theorem without inequalities, testing steerability without inequalities would be more strong and require less resources.
View Article and Find Full Text PDFIn comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states.
View Article and Find Full Text PDFEinstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schrödinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary.
View Article and Find Full Text PDF