Circular RNAs (circRNAs) are a distinct class of endogenous RNAs characterized by their covalently closed circular structure. CircRNAs play crucial regulatory roles in various biological processes and pathogenesis. In this study we investigated the role of circRNAs in cardiomyocyte pyroptosis and underlying mechanisms.
View Article and Find Full Text PDF, an important ornamental tree native to East Asia, comprises two subspecies in distinct regions, with wild populations facing suboptimal survival. This study aimed to understand the potential habitat distribution of these subspecies under future climate-change conditions to support climate-adaptive conservation. The maximum entropy (MaxEnt) model was used with occurrence and environmental data to simulate the current and future suitable habitats under various climate scenarios.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2023
Cell Death Differ
March 2022
Circular RNAs (circRNAs) are differentially expressed in various cardiovascular disease including myocardial ischemia-reperfusion (I/R) injury. However, their functional impact on cardiomyocyte cell death, in particular, in necrotic forms of death remains elusive. In this study, we found that the level of mmu_circ_000338, a cardiac- necroptosis-associated circRNA (CNEACR), was reduced in hypoxia-reoxygenation (H/R) exposed cardiomyocytes and I/R-injured mice hearts.
View Article and Find Full Text PDFCardiovasc Drugs Ther
February 2023
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) are recently discovered small non-coding RNAs consisting of 24-35 nucleotides, usually including a characteristic 5-terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3' end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity.
View Article and Find Full Text PDFInt J Clin Exp Pathol
August 2019
PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) belongs to the phosphokinase family, that has been reported to play an important role in several cancers. However, the expression of PHLPP2 and its correlation with clinicopathologic characteristics in colorectal cancer (CRC) have yet to be determined. The aim of this study is to investigate the expression of PHLPP2 and explore its role in CRC.
View Article and Find Full Text PDFMitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy.
View Article and Find Full Text PDF