AgS quantum dots have received extensive attention as theranostic agents for second near-infrared (NIR-II) fluorescence and photoacoustic dual-mode imaging, and photothermal therapy. However, it is still greatly challenging to synthesize AgS quantum dots using aqueous synthesis. In this study, genetically engineered polypeptide-capped AgS quantum dots were successfully synthesized.
View Article and Find Full Text PDFDespite burgeoning development of nanoplatform made in the past few years, it remains a challenge to produce drug nanocarrier that enables requested on/off drug release. Thus, this study aimed to develop an ideal near-infrared light-triggered smart nanocarrier for targeted imaging-guided treatment of cancer that tactfully integrated photothermal therapy with chemotherapy to accurately control drug release time and dosage. This delivery system was composed of AgS QD coating with dendritic mesoporous silica (DMSN), which acted as nanocarrier of doxorubicin localized inside pores.
View Article and Find Full Text PDFBy integrating the characteristics of each therapy modality and material chemistry, a multitherapy modality is put forward: tumor starvation triggered synergism with sensitized chemotherapy. Following starvation-induced amplification of pathological abnormalities in tumors, chemotherapy is arranged to be locally activated and accurately reinforced to perfect multitherapy synergism from spatial and temporal perspectives. To this end, glucose oxidase (GOD) and a hypoxic prodrug of tirapazamine (TPZ) are loaded in acidity-decomposable calcium carbonate (CaCO ) nanoparticles concurrently tethered by hyaluronic acid.
View Article and Find Full Text PDFThe accurate treatment of tumors with the help of multimodality imaging is of great significance. Herein, a novel multifunctional probe combining active targeted fluorescent imaging (FL)/photoacoustic imaging (PA) and chemo-photothermal therapy for tumors has been designed. Targeting molecule folate (FA) modified graphene oxide (GO) was used to coat core-shell silver sulfide@mesoporous silica (QD@Si) while antitumoral doxorubicin (DOX) was loaded in mesoporous channels by electrostatic adhesion, and a delivery system (QD@Si-D/GO-FA) for active targeted dual-mode imaging and synergistic chemo-photothermal for tumors was successfully obtained.
View Article and Find Full Text PDFJ Nanobiotechnology
April 2018
Background: AgS has the characteristics of conventional quantum dot such as broad excitation spectrum, narrow emission spectrum, long fluorescence lifetime, strong anti-bleaching ability, and other optical properties. Moreover, since its fluorescence emission is located in the NIR-II region, has stronger penetrating ability for tissue. AgS quantum dot has strong absorption during the visible and NIR regions, it has good photothermal and photoacoustic response under certain wavelength excitation.
View Article and Find Full Text PDFNanotechnology
February 2018
In this study, an oil-soluble AgS quantum dot (QD) was synthesized through thermal decomposition using the single-source precursor method, and Pluronic F127 (PF127), a triblock copolymer functionalized with folic acid (FA), was deposited on the surface of the QD, then a water-soluble PF127-FA@AgS nanoprobe with targeting ability was fabricated. The as-prepared PF127-FA@AgS exhibited spheroidal morphology and high dispersibility, with average diameters of 115 ± 20.7 nm (as observed by transmission electron microscopy).
View Article and Find Full Text PDFSafe multifunctional nanoplatforms that have multiple therapeutic functions integrated with imaging capabilities are highly desired for biomedical applications. In this paper, targeted chemo-photothermal synergistic therapy and photoacoustic/computed tomography imaging of tumors were achieved by one novel multifunctional nanoprobe (GMS/DOX@SLB-FA); it was composed of a gold nanostar core and a doxorubicin (DOX)-loaded mesoporous silica shell (GMS), which was coated with a folic acid (FA)-modified thermosensitively supported lipid bilayer (SLB-FA) as a gatekeeper. The multifunctional probe had perfect dispersion and stability; 2.
View Article and Find Full Text PDF