Publications by authors named "Wasif Farooq"

The conversion of 5-hydroxymethylfurfural (HMF) into valuable chemicals, such as 2,5-furandicarboxylic acid (FDCA), is pivotal for sustainable chemical production, offering a renewable pathway to biodegradable plastics and high-value organic compounds. This pioneering study explores the synthesis of FeNi nanostructures via aerosol-assisted chemical vapor deposition (AACVD) for the electrochemical oxidation of HMF to FDCA. By adjusting the deposition time, we developed two distinct nanostructures: FeNi-40, which features nanowires with spherical terminations, and FeNi-80, which features aggregated spherical structures.

View Article and Find Full Text PDF

Produced water (PW) from oil and gas exploration adversely affects aquatic life and living organisms, necessitating treatment before discharge to meet effluent permissible limits. This study first used activated sludge to pretreat PW in a sequential batch reactor (SBR). The pretreated PW then entered a 13 L photobioreactor (PBR) containing Scenedesmus obliquus microalgae culture.

View Article and Find Full Text PDF

This study investigates CO biofixation and pyrolytic kinetics of microalga using model-fitting and model-free methods. Microalga was grown in two different media. The highest rate of CO fixation (0.

View Article and Find Full Text PDF

Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.

View Article and Find Full Text PDF

An alternative source of energy and materials with low negative environmental impacts is essential for a sustainable future. Microalgae is a promising candidate in this aspect. The focus of this study is to optimize the supply of nitrogen and carbon dioxide during the cultivation of locally isolated strain HY-6.

View Article and Find Full Text PDF

The economic viability of microalgae as a bioenergy source depends on many factors. High CO fixing rate, improved lipids yield, and minimum water footprint are few key parameters. This study investigates the effect of four initial nitrogen concentrations (1-, 2-, 6- and 10-mM as nitrate) on lipids yield, their classification and composition, CO fixation rate, and water quality for further reuse after first cultivation.

View Article and Find Full Text PDF

A novel genetic algorithm-based feature selection approach is incorporated and based on these features, four different ML methods were investigated. According to the findings, ML models could reliably predict bio-oil yield. The results showed that Random forest (RF) is preferred for bio-oil yield prediction (R2 ~ 0.

View Article and Find Full Text PDF

In this work, the effects of several factors, such as temperature, reaction time, and solvent and acid quantity on in situ transesterification yield of wet Nannochloropsis salina were investigated. Under equivalent total solvent volume to biomass ratio, pure alcohol showed higher yield compared to alcohol-chloroform solvent. For esterifying 200 mg of wet cells, 2 ml of methanol and 1 ml of ethanol was sufficient to complete in situ transesterification.

View Article and Find Full Text PDF

Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water.

View Article and Find Full Text PDF

The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW.

View Article and Find Full Text PDF

In this work, a cooperative algal-bacterial system that efficiently degrades thiocyanate (SCN(-)), a toxic contaminant, and exhibits high lipid productivity, was developed. A consortium of mixed bacteria (activated sludge) and microalgae was sequentially cultivated under photoautotrophic and photoheterotrophic modes. The hydrolysis of SCN(-) to ammonium (NH4(+))-nitrogen and subsequent nitrification steps were performed by the initial activated sludge under lithoautotrophic conditions.

View Article and Find Full Text PDF

Identification of novel microalgal strains with high lipid productivity is one of the most important research topics in renewable biofuel research. However, the major bottleneck in the strain screening process is that currently known methods for the estimation of microalgal lipid are laborious and time-consuming. The present study successfully employed sulpho-phospho-vanillin (SPV) colorimetric method for direct quantitative measurement of lipids within liquid microalgal culture.

View Article and Find Full Text PDF

Microalgae biorefinement has attracted in intensive academic and industrial interest worldwide for its potential to replace petrol biofuels as economically and environmentally advantageous alternatives. However, harvesting and lipid extraction remain as critical and difficult issues to be resolved. In the present study, four amino-groups functionalized organic-nano clays were prepared.

View Article and Find Full Text PDF

In microalgae-based biorefinement, one of the highest practical priorities is to reduce the costs of downstream processes. As one potential solution, microalgae harvesting by organoclays has received particularly keen research interest. In the present study, cationic charged aluminum- and magnesium-backboned organoclays were synthesized and solubilized in aqueous solution due to their high-density of amino sites.

View Article and Find Full Text PDF

A cultivation system in the two-stage photoautotrophic-photoheterotrophic/mixotrophic mode was adapted to maximize lipid productivity of two freshwater strains of Chlorella sp. grown in brewery wastewater (BWW). The endogenous Chlorella sp.

View Article and Find Full Text PDF