Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Identification of novel microalgal strains with high lipid productivity is one of the most important research topics in renewable biofuel research. However, the major bottleneck in the strain screening process is that currently known methods for the estimation of microalgal lipid are laborious and time-consuming. The present study successfully employed sulpho-phospho-vanillin (SPV) colorimetric method for direct quantitative measurement of lipids within liquid microalgal culture. The SPV reacts with lipids to produce a distinct pink color, and its intensity can be quantified using spectrophotometric methods by measuring absorbance at 530nm. This method was employed for a rapid quantification of intracellular lipid contents within Chlorella sp., Monoraphidium sp., Ettlia sp. and Nannochloropsis sp., all of which were found to have lipid contents ranging in between 10% and 30%. Subsequent analysis of the biomass using gas chromatography confirmed that our protocol is highly accurate (R(2)=0.99).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.12.077 | DOI Listing |