Publications by authors named "Wael A A Arafa"

Article Synopsis
  • This study focuses on creating a new nanocomposite (GO-PAA-Cu-LP) for medical uses through a multi-step synthesis involving graphene oxide and polyacrylic acid.
  • The research includes a variety of characterization techniques to analyze the nanocomposite, demonstrating that it retains about 73% of its reactivity even after 9 weeks of storage at low temperatures.
  • The findings show that the modified GO-PAA-Cu-LP has enhanced selectivity against cancer cells, promoting apoptosis and cell cycle arrest compared to standard composites and lactoperoxidase alone.
View Article and Find Full Text PDF

Our novel binuclear complex-anchored Ru(III) catalyst, designed and assembled by sonicating 2,2'-(4,6-dihydroxy-1,3-phenylene)bis(1-benzo[]imidazole-4-carboxylic acid), Ru(DMSO)Cl and 4-methylpyridine, demonstrates remarkable efficiency and selectivity. It promotes one-pot reactions, including active methylenes and benzyl alcohols in water, via a tandem aerobic oxidation/Knoevenagel condensation process, yielding benzylidene malononitrile in excellent yields. The catalyst's ability to oxidize benzyl alcohols to aldehydes, which then undergo Knoevenagel condensation with active methylenes, makes it a multifunctional catalyst.

View Article and Find Full Text PDF

It is imperative to explore new biocompatible drugs with low toxicity for use in medicinal fields such as fighting tumors. Bovine lactoperoxidase (BLPO) stems from the most important enzymes in the bovine whey that provide a proper pattern for nano-formulation with nanomaterials. LPO is a suitable protein to be coated or adsorbed to alginate modified graphene oxide (GO-SA), which forms the modified GO-SA-LPO hybrid structure.

View Article and Find Full Text PDF

A novel two tri-thiosemicarbazones derivatives, namely 2,2',2''-((2-Hydroxybenzene-1,3,5-triyl)tris(methanylylidene))tris(N-benzylhydrazine-1-carbothioamide) (HBC) and 2,2',2''-((2-hydroxybenzene-1,3,5-triyl) tris (methanylylidene)) tris (N-allylhydrazine-1-carbothioamide) (HAC), have been synthesized and their chemical structures were determined using different spectroscopic and analytical approaches. Then, utilizing methods including open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy, the inhibitory effect of the synthesized thiosemicarbazones on mild steel (MS) in an acidic environment (0.5 M HSO) was thoroughly investigated.

View Article and Find Full Text PDF

An efficient, microwave/ultrasound-irradiated synthesis of novel chromenopyrimidines has been established. 2-Amino-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4-chromene-3-carbonitrile () underwent cyclization reactions with various assorted reagents under sustainable conditions to afford a family of fused pyrimidine derivatives. The proposed structures of the designed fused pyrimidines were confirmed by several spectral techniques.

View Article and Find Full Text PDF

This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO nanocomposite.

View Article and Find Full Text PDF

In this study, the preparation of graphene oxide@chitosan (GO@CS) composite beads was investigated via continuous dropping techniques to remove methylene blue (MB)-dye from an aqueous media. The prepared beads were characterized using various techniques before and after the adsorption of MB. The experimental results showed that the adsorption processes fit the kinetic pseudo-second-order and Langmuir isotherm models.

View Article and Find Full Text PDF

An appropriate and efficient Q-tube-assisted ammonium acetate-mediated protocol for the assembly of the hitherto unreported 5-arylazopyrazolo[3,4-]pyridines was demonstrated. This methodology comprises the cyclocondensation reaction of 5-amino-2-phenyl-4-pyrazol-3-one with an assortment of arylhydrazonals in an NHOAc/AcOH buffer solution operating a Q-tube reactor. This versatile protocol exhibited several outstanding merits: easy work-up, mild conditions, scalability, broad substrate scope, safety (the Q-tube kit is simply for pressing and sealing), and a high atom economy.

View Article and Find Full Text PDF

An efficient and environmentally friendly method was established for designing novel 3-amino-1,4-dihydroquinoxaline-2-carbonitrile () the reaction of bromomalononitrile and benzene-1,2-diamine under microwave irradiation in an excellent yield (93%). This targeted amino derivative was utilized for the construction of a series of Schiff bases (-). A new series of thiazolidinone derivatives (-) were synthesized in high yields (89-96%) treatment of thioglycolic acid with Schiff bases (-) under microwave irradiation in high yields (89-96%).

View Article and Find Full Text PDF

In this review, we focus on some interesting and recent examples of various applications of organic azides such as their intermolecular or intramolecular, under thermal, catalyzed, or noncatalyzed reaction conditions. The aforementioned reactions in the aim to prepare basic five-, six-, organometallic heterocyclic-membered systems and/or their fused analogs. This review article also provides a report on the developed methods describing the synthesis of various heterocycles from organic azides, especially those reported in recent papers (till 2020).

View Article and Find Full Text PDF

Herein, a distinctive dihydroxy ionic liquid ([Py-2OH]OAc) was straightforwardly assembled from the sonication of pyridine with 2-chloropropane-1,3-diol by employing sodium acetate as an ion exchanger. The efficiency of the ([Py-2OH]OAc as a promoter for the sono-synthesis of a novel library of condensed products through DABCO-catalyzed Knoevenagel condensation process of adequate active cyclic methylenes and ninhydrin was next investigated using ultimate greener conditions. All of the reactions studied went cleanly and smoothly, and the resulting Knoevenagel condensation compounds were recovered in high yields without detecting the aldol intermediates in the end products.

View Article and Find Full Text PDF

This work demonstrates the optimization of an efficient, mild, and environmentally friendly synthetic approach to access a diverse library of -naphthoyl thioureas. These derivatives could be exploited as precursor scaffolds for designing valuable heterocycles with anticipated biological activities. Additionally, the utilization of a copper complex derived from the newly synthesized -naphthoyl thiourea ligand in the photodegradation of methyl orange (MO) dye was explored.

View Article and Find Full Text PDF

Herein, a novel DABCO-based dicationic ionic liquid (bis-DIL) was easily prepared from the sonication of DABCO with 1,3-dichloro-2-propanol and then characterized by several techniques. Thereafter, under the ultimate green conditions, the performance of the bis-DIL was examined for the sono-synthesis of a new library of bis-2-amino-5-arylidenethiazol-4-ones via one-pot pseudo-five-component Knoevenagel condensation reaction of appropriate dialdehydes, rhodanine and amines. This protocol is tolerant towards several mono- and dialdehydes, excellently high yielding and affording access to the desired products in a single step within a short reaction time.

View Article and Find Full Text PDF

An expedient and tandem regioselective one-pot protocol for the sono-synthesis of bis-[1,2,4]-triazol-3-yl amines and bis-2-iminothiazolines from corresponding bis-1,3-disubstituted thioureas has been developed. The products' regioselectivity correlate well with the p s of the parent amines, in which the amine possessing higher p goes to the ring nitrogen, whereas the other nitrogen remains flanked as an exocyclic nitrogen of the bis-triazole or bis-thiazole moieties. Further, the sonochemical preparation of both bis-5-(2-nitrobenzylidene) thiobarbiturates and bis-2-thioxoimidazolidine-4,5-diones from bis-1,3-disubstituted thioureas has also been achieved.

View Article and Find Full Text PDF

Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy) ] (bpy=2,2'-bipyridine).

View Article and Find Full Text PDF

New substituted triazolopyrimidne derivatives were synthesized starting from 1,2,3-triazolo-4-carboxamide derivative. The N- and S-glycoside derivatives of the synthesized triazolopyrimidine ring system as well as their acyclic sugar analogs were also synthesized. The cytotoxicity and in vito anticancer evaluation of the prepared compounds have been assessed against three different human tumor cell lines including human breast MCF-7, lung A549 and colon HCT116 cancer cell lines.

View Article and Find Full Text PDF

During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O2 and solar fuels, such as H2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process.

View Article and Find Full Text PDF