Publications by authors named "Vishnu Revuri"

Activation of endosomal Toll-like receptors 7 and 8 in antigen-presenting cells typically results in the induction of type I interferons (IFN). We previously reported a series of imidazoquinolines that potently activate TLR7/8. The potency and selectivity of these compounds can be tuned via substitutions to the N1 and C2 positions of the tricycle.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer is the most common cancer among women and a leading cause of cancer-related deaths, prompting research into better treatment options.
  • Recent developments in immunotherapy, especially with hydrogels, show promise for enhancing patient survival rates by offering targeted and less toxic treatments.
  • This review focuses on the benefits and workings of hydrogels in breast cancer immunotherapy, including their ability to alter the tumor environment and deliver drugs effectively, suggesting they could lead to more personalized and effective treatments for patients.
View Article and Find Full Text PDF

Combined cancer immunotherapy has demonstrated promising potential with an amplified antitumor response and immunosuppressive tumor microenvironment (TME) modulation. However, one of the main issues that cause treatment failure is the poor diffusion and insufficient penetration of therapeutic and immunomodulatory agents in solid tumors. Herein, a cancer treatment approach that combines photothermal therapy (PTT) and nitric oxide (NO) gas therapy for tumor extracellular matrix (ECM) degradation, along with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor that reduces tryptophan catabolism to kynurenine, and DMXAA, a stimulator of interferon gene (STING) agonist that stimulates antigen cross-presentation, is proposed to overcome this issue.

View Article and Find Full Text PDF

The deposition of monosodium urate (MSU) crystals induces the overexpression of reactive oxygen species (ROS) and proinflammatory cytokines in residential macrophages, further promoting the infiltration of inflammatory leukocytes in the joints of gouty arthritis. Herein, a peroxidase-mimicking nanoscavenger was developed by forming manganese dioxide over albumin nanoparticles loaded with an anti-inflammatory drug, indomethacin (BIM), to block the secretion of ROS and COX2-induced proinflammatory cytokines in the MSU-induced gouty arthritis model. In the MSU-induced arthritis mouse model, the BIM nanoparticles alleviated joint swelling, which is attributed to the abrogation of ROS and inflammatory cytokine secretions from proinflammatory macrophages that induces neutrophil infiltration and fluid building up in the inflammation site.

View Article and Find Full Text PDF

Immunostimulatory adjuvants that potently activate antigen-presenting cells and (in turn) prime cytotoxic T cells are a key component of anticancer vaccines. In this study, we investigated a multi-adjuvant approach combining a TLR 7/8 agonist (522) and a STING agonist (DMXAA) to promote enhanced antigen cross-presentation, stimulate specific antitumor T-cell responses, and provide improved anticancer efficacy. In vitro experiments using bone marrow-derived dendritic cells (BMDCs) confirmed enhanced activation with the 522-DMXAA combination based on both co-stimulatory molecule expression and pro-inflammatory cytokine secretion.

View Article and Find Full Text PDF

Light-assisted hyperthermic therapy is a promising strategy to treat cancer. Graphene and their derivatives with unique physiochemical properties, intrinsic near infrared absorption, and ability to transduce the absorbed light energy into heat, have attracted researchers to use them for photothermal therapy (PTT). In addition, the presence of surface functional groups and large surface area that can facilitate interactions with hydrophobic molecules has favored the use of graphene allotropes for developing PTT-based combinatorial therapies.

View Article and Find Full Text PDF

Graphene has drawn tremendous interest in the field of nanoscience as a superior theranostic agent owing to its high photostability, aqueous solubility, and low toxicity. This monoatomic thick building block of a carbon allotrope exhibits zero to two-dimensional characteristics with a unique size range within the nanoscale. Their high biocompatibility, quantum yield, and photoluminescent properties make them more demandable in biomedical research.

View Article and Find Full Text PDF

Excessive inflammatory response during sepsis causes irreversible damage to healthy tissues and results in multi-organ failure. During infection, bacterial endotoxin-triggered inflammatory responses in macrophages facilitate the recruitment of circulating leukocytes, including neutrophils and monocytes. A key component that aggravates the systemic inflammatory response is the generation of stable reactive oxygen species such as hydrogen peroxide (HO).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) features immunologically "cold" tumor microenvironments with limited cytotoxic T lymphocyte (CTL) infiltration. Although ablation therapies have demonstrated modulation of "cold" TNBC tumors to inflamed "hot" tumors, recruitment of myeloid derived suppressor cells (MDSCs) at the tumors post ablation therapies prevents the infiltration of CTLs and challenge the antitumor potentials of T-cell therapies. Here, a thermal ablation immunotherapy strategy is developed to prevent the immune suppressive effects of MDSCs during photothermal ablation and induce a durable systemic antitumor immunity to eradicate TNBC tumors.

View Article and Find Full Text PDF

Treatment of brain-related diseases is one of the most strenuous challenges in drug delivery research due to numerous hurdles, including poor blood-brain barrier penetration, lack of specificity, and severe systemic toxicities. Our research primarily focuses on the delivery of natural therapeutic compound, α-asarone, for the treatment of brain-related diseases. However, α-asarone has poor aqueous solubility, bioavailability, and stability, all of which are critical issues that need to be addressed.

View Article and Find Full Text PDF

Tumor adaption to hypoxic stress not only plays a crucial role in tumor malignancy but also can protect cancer cells from therapeutic interventions. Hence, therapeutic strategies attenuating tumor hypoxia in conjunction with conventional therapies may be an ideal approach. Here, we report the application of in situ oxygenic carbon nano-onion (CNO)/manganese oxide nanopods (iOCOMs) as novel theranostic photothermal transducers to neutralize the oncogenic influence of the hypoxic tumor microenvironment (TME).

View Article and Find Full Text PDF

The limitations of conventional therapeutic drugs necessitate the importance of developing novel therapeutics to treat diverse diseases. Conventional drugs have poor blood circulation time and are not stable or compatible with the biological system. Nanomaterials, with their exceptional structural properties, have gained significance as promising materials for the development of novel therapeutics.

View Article and Find Full Text PDF

Malignant melanoma is a highly aggressive type of cancer that requires radical treatment strategies to inhibit the cancer cell progression and metastasis. In recent years, preclinical research and clinical trials on melanoma treatment have been considerably focused on the adjuvant-based immunotherapy for enhancing the immune response of innate immune cells against cancer cells. However, the clinical outcome of these adjuvant-based treatments is inadequate due to an improper delivery system for these immune activators to reach the target site.

View Article and Find Full Text PDF

Curcumin, which is a potential antineuroinflammatory and neuroprotective compound, exhibits poor bioavailability in brain cells due to its difficulty in crossing the blood⁻brain barrier and its rapid metabolism during circulation, which decreases its efficacy in treating chronic neuroinflammatory diseases in the central nervous system. The bioavailability and potential of curcumin can be improved by using a nanodelivery system, which includes solid lipid nanoparticles. Curcumin-loaded solid lipid nanoparticles (SLCN) were efficiently developed to have a particle size of about 86 nm and do not exhibit any toxicity in the endothelial brain cells.

View Article and Find Full Text PDF

Tailoring combinatorial therapies along with real-time monitoring strategies has been the major focus of overcoming multidrug resistance in cancer. However, attempting to develop a multifunctional nanoplatform in a single construct leads to compromising therapeutic outcomes. Herein, we developed a simple, theranostic nanoassembly containing a hyaluronic acid-stabilized redox-sensitive (HART) polyethylenimine polyplex composed of a doxorubicin (DOX) intercalated Bcl-2 shRNA encoded plasmid along with a green-synthesized hausmannite (MnO) and hematite (FeO) nanoparticle (GMF).

View Article and Find Full Text PDF

Oxidative stress during sepsis pathogenesis remains the most-important factor creating imbalance and dysregulation in immune-cell function, usually observed following initial infection. Hydrogen peroxide (HO), a potentially toxic reactive oxygen species (ROS), is excessively produced by pro-inflammatory immune cells during the initial phases of sepsis and plays a dominant role in regulating the pathways associated with systemic inflammatory immune activation. In the present study, we constructed a peroxide scavenger mannosylated polymeric albumin manganese dioxide (mSPAM) nanoassembly to catalyze the decomposition of HO responsible for the hyper-activation of pro-inflammatory immune cells.

View Article and Find Full Text PDF

The development of biologically targeted contrast agents for X-ray computed tomography (CT) imaging remains a major challenge. Here, we investigated a green chemistry-based synthesis of lymph node-targeted mannan-capped gold nanoparticles (M-GNPs) as a CT contrast agent. In this study, mannan was used as a reducing and stabilizing agent for gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

Convenient multiple dosing makes oral administration an ideal route for delivery of therapeutic siRNA. However, hostile GI environments and nonspecific biological trafficking prevent achieving appropriate bioavailability of siRNA. Here, an orally administered AuNP-siRNA-glycol chitosan-taurocholic acid nanoparticle (AR-GT NPs) was developed to selectively deliver Akt2 siRNA and treat colorectal liver metastases (CLM).

View Article and Find Full Text PDF

The number of people suffering from insulin-independent type 2 diabetes mellitus (T2DM) is ever increasing on a yearly basis. Current anti-diabetic medications often result in adverse weight gain and hypoglycemic episodes. Hypoglycemia can be avoided with glucagon-like peptide (GLP)-1 receptor agonists, which are expensive and require daily injections that may result immune activation.

View Article and Find Full Text PDF

In this study, photosensitizer conjugated iron oxide nanoparticles were strategically designed and prepared for simultaneous PDT and dual-mode fluorescence/MR imaging. The MRI contrast agent Fe3O4 was modified by APTES to functionalize the surface and further to link with heparin-pheophorbide-A conjugates.

View Article and Find Full Text PDF