Breast cancer is one of the most prevalent cancers worldwide, with triple-negative breast cancer (TNBC) representing a particularly aggressive subtype, making it difficult to treat, and is associated with a poor prognosis. However, chemotherapy is associated with challenges such as drug resistance, off-target toxicity, and limited efficacy, highlighting the need for more effective therapies. Nanocarriers, including liposomes, micelles, and dendrimers, offer improved drug delivery efficacy and reduced toxicity but face challenges in terms of stability and scalability.
View Article and Find Full Text PDFIndia bears the highest global burden of oral cancer, with over 83,400 cases reported in 2022. The widespread use of smokeless tobacco and areca nut, particularly in rural and underserved communities, continues to drive this public health crisis. Despite government regulations and awareness campaigns, tobacco consumption remains high due to cultural acceptance, affordability, and accessibility of products like gutkha and khaini.
View Article and Find Full Text PDFAir pollution poses significant risks to public health, with diesel exhaust particles (DEP) contributing to a variety of systemic effects, including potential impacts on bone metabolism. This study investigates DEP's osteogenic and bone toxic effects using both pre-osteoblast models and Zebrafish models under healthy and osteoporotic conditions. Pre-osteoblasts treated with DEP exhibited enhanced calcium deposition and upregulated osteogenic markers, including Runx2 and type I collagen, at 25-50 μg ml concentrations.
View Article and Find Full Text PDFIn this work, we leverage the pH shift of the tumor microenvironment to achieve controlled, multidrug release from an implantable, pH-responsive bilayer film composed of chitosan (CS) and carboxymethyl cellulose (CMC). Drug release is driven by out-of-plane actuation, where curvature is induced in response to acidic pH, serving as a physiological stimulus. The kinetics of release are modulated by the degree of curvature and the rate of actuation at a given pH.
View Article and Find Full Text PDFBone regeneration is a process that aims to restore the structure and function of damaged bone tissues. Modern approaches for bone regeneration involve a combination of strategies, including tissue engineering and biomaterials, to promote healing. In this study, electrospun nanofibers were developed by using biosynthesized chitosan (CS)- and graphene oxide (GO)-loaded polyacrylonitrile (PAN) nanofibers.
View Article and Find Full Text PDFInt J Biol Macromol
April 2025
The space microgravity environment and cosmic radiation pose a significant threat to musculoskeletal health, particularly bone mass. However, the critical mechanism underlying space-induced bone loss and its relation to cellular oxidative stress remains unclear. Currently used bone-loss-reversing drugs face limitations like poor efficacy and metabolic defects.
View Article and Find Full Text PDFAlpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.
View Article and Find Full Text PDFBiomacromolecules
November 2024
Nanotherapeutic techniques are becoming increasingly important in the treatment of bone disorders owing to their targeted drug delivery. This study formulates zein nano coop composites containing chimeric antioxidants (ascorbic acid, luteolin, resveratrol, and coenzyme Q) (AZN) and evaluates its application in bone regeneration using osteoblasts and a Zebrafish osteoporosis model. In vitro experiments with human osteoblast-like MG63 cells showed enhancement of bone mineralization and regeneration.
View Article and Find Full Text PDFCureus
September 2024
Tuberculosis (TB) remains a significant global health challenge, necessitating strict adherence to medication for successful treatment and prevention of drug resistance. Adherence to a regular medication regimen is crucial in TB management, yet achieving high adherence rates among patients proves challenging due to various factors including forgetfulness, complexity of treatment schedules, and socioeconomic barriers. This study explores the potential of an automatic medicine dispenser (AMD) anchored system to improve medication adherence among TB patients and evaluates its impact through monitoring and feedback mechanisms.
View Article and Find Full Text PDFAnti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin.
View Article and Find Full Text PDFDifferentiation
March 2024
Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix.
View Article and Find Full Text PDFTissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials.
View Article and Find Full Text PDFInt J Biol Macromol
February 2024
This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level.
View Article and Find Full Text PDFThe cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors.
View Article and Find Full Text PDFCell Tissue Res
November 2023
Recent years have seen the emergence of tissue engineering strategies as a means to overcome some of the limits of conventional medical treatment. A biomaterial with tailored physio-chemical characteristics is used in this sophisticated method to transport stem cells and growth factors/bioactive substances, or to attract local endogenous cells, enabling new tissue formation. Biomaterials might serve as a biomimetic structure inspired by the natural milieu, assisting the cells in establishing their natural relationships.
View Article and Find Full Text PDFThe transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors.
View Article and Find Full Text PDF