98%
921
2 minutes
20
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785094 | PMC |
http://dx.doi.org/10.1021/acsomega.3c07062 | DOI Listing |
J Biomech Eng
September 2025
Texas Tech University Box 41021 Lubbock, TX 79409.
Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.
Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.
View Article and Find Full Text PDFEur Arch Paediatr Dent
September 2025
Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, Brazil.
Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.
Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.
Eur J Orthop Surg Traumatol
September 2025
Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China.
Purpose: To investigate the images and treatment differences for Type IIIa atlantoaxial rotary dislocation (AARD) by comparing the imaging characteristics of patients with Type III and Type IIIa AARD.
Methods: The present study retrospectively analyzed a cohort of 35 patients who underwent posterior C1-C2 intra-articular fusion due to AARD from our hospital database. Among them, 23 patients were diagnosed with Type III AARD, while the remaining 12 patients were diagnosed with Type IIIa AARD.
Arch Orthop Trauma Surg
September 2025
Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Winterthur, Switzerland.
Background: Accurate acetabular cup orientation in total hip arthroplasty (THA) is crucial for successful outcomes. Intraoperative fluoroscopy may be used to evaluate acetabular cup placement. This study aimed to evaluate the accuracy of purely visual estimation of cup inclination and anteversion using intraoperative fluoroscopy, considering different surgeon experience levels and cup designs.
View Article and Find Full Text PDF