Publications by authors named "Valeria Capurro"

Background And Purpose: Cystic fibrosis (CF) is due to loss-of-function variants of the CF transmembrane conductance regulator (CFTR) channel. The most effective treatment for people with CF carrying the F508del mutation is the triple combination of elexacaftor-tezacaftor-ivacaftor (ETI). ETI can correct the underlying defect(s) in other CFTR mutants.

View Article and Find Full Text PDF

Background: The converging biology between enveloped viruses and extracellular vesicles (EVs) has raised interest in the application of engineered EVs as antiviral therapeutics. Following the recent COVID-19 pandemic, EVs engineered with either the ACE2-receptor or Spike-protein have been proposed as strategy to either decoy SARS-CoV-2, or to compete with its cell entry. For generic use as a platform for future pandemic preparedness, a systematic and quantitative comparison of both strategies is required to assess their limitations and benefits across different variants of concern.

View Article and Find Full Text PDF

Background: The triple cystic fibrosis transmembrane conductance regulator (CFTR) modulators combination elexacaftor/tezacaftor/ivacaftor (ETI) has been approved for people with cystic fibrosis (pwCF) bearing at least one allele. Despite the development of CFTR modulators having dramatically improved respiratory outcomes in pwCF, clinical studies have showed variable responses to this drug formulation. Of note, airway inflammation and bacterial colonisation persist in the upper and lower respiratory tract even in ETI-treated patients.

View Article and Find Full Text PDF

Electrogenic transepithelial ion transport can be measured with the short-circuit current technique. Such experiments are frequently used to evaluate the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel that is defective in cystic fibrosis, one of the most frequent genetic diseases. Typically, CFTR activity is estimated from the effect of CFTR-172, a selective CFTR inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers investigated the G85E-CFTR variant using human nasal epithelial cells and found that the drugs elexacaftor and tezacaftor modestly improved CFTR function, but chronic treatment with ivacaftor had negative effects.
  • * The study suggests that combining elexacaftor with a new corrector, ARN23765, can significantly enhance CFTR activity and highlights the need for better drug combinations to help patients with the G85E mutation.
View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from individuals with and without CF, including various (CF transmembrane conductance regulator) mutations, respond to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and SARS-CoV.

View Article and Find Full Text PDF

We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring () variants: 9 with rare variants (Q359R [=2], G480S, R334W [=5], and R560T) and 1 harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at the air-liquid interface.

View Article and Find Full Text PDF

Background: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum.

View Article and Find Full Text PDF

We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.

View Article and Find Full Text PDF

S737F is a Cystic Fibrosis (CF) transmembrane conductance regulator (CFTR) missense variant. The aim of our study was to describe the clinical features of a cohort of individuals carrying this variant. In parallel, by exploiting ex vivo functional and molecular analyses on nasal epithelia derived from a subset of S737F carriers, we evaluated its functional impact on CFTR protein as well as its responsiveness to CFTR modulators.

View Article and Find Full Text PDF

Background: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator.

View Article and Find Full Text PDF
Article Synopsis
  • Cystic Fibrosis (CF) is a genetic disorder caused by mutations like F508del that prevent the CFTR protein from reaching the cell membrane, impacting lung function in many newborns.
  • Researchers used advanced methods, such as mass spectrometry and bioinformatics, to analyze protein changes in a CF cell model after treatment with VX-809, a drug that helps CFTR trafficking.
  • Results indicated that while overall protein expression didn't change significantly, there were notable shifts in the localization of mitochondrial and peroxisomal proteins, suggesting VX-809 may promote healthier cell characteristics beyond just improving CFTR transport.
View Article and Find Full Text PDF

Loss-of-function mutations of the gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination.

View Article and Find Full Text PDF

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations.

View Article and Find Full Text PDF

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations.

View Article and Find Full Text PDF

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. Deletion of phenylalanine at position 508, p.F508del, the most frequent mutation among CF patients, causes a folding and traffic defect, resulting in a dramatic reduction in the CFTR expression.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease characterized by the lack of cystic fibrosis transmembrane conductance regulator (CFTR) protein expressed in epithelial cells. The resulting defective chloride and bicarbonate secretion and imbalance of the transepithelial homeostasis lead to abnormal airway surface liquid (ASL) composition and properties. The reduced ASL volume impairs ciliary beating with the consequent accumulation of sticky mucus.

View Article and Find Full Text PDF

A novel class of transmembrane anion carriers, the click-tambjamines, display remarkable anionophoric activities in model liposomes and living cells. The versatility of this building block for the generation of molecular diversity offers promise to develop future drugs based on this design.

View Article and Find Full Text PDF

Background And Purpose: Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease that originates from the defective function of the CF transmembrane conductance regulator (CFTR) protein, a cAMP-dependent anion channel involved in fluid transport across epithelium. Because small synthetic transmembrane anion transporters (anionophores) can replace the biological anion transport mechanisms, independent of genetic mutations in the CFTR, such anionophores are candidates as new potential treatments for CF.

Experimental Approach: In order to assess their effects on cell physiology, we have analysed the transport properties of five anionophore compounds, three prodigiosines and two tambjamines.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect.

View Article and Find Full Text PDF