Publications by authors named "Martin Mayora Neto"

Introduction: An unbalanced immune response and excessive inflammation are the major hallmarks of severe SARS-CoV-2 infection, which can result in multiorgan failure and death. The dysregulation of the complement system has been shown in various studies as a crucial factor in the immunopathology of SARS-CoV-2 infection. Complement alternative pathway has been linked to the excessive inflammation in severe SARS-CoV-2 infection in which decreased levels of factor H (FH) and elevated levels of properdin (FP) were observed.

View Article and Find Full Text PDF

To facilitate the study of influenza C (ICV) and influenza D (IDV) viruses, we generated lentiviral pseudotyped viruses (PVs) expressing the hemagglutinin-esterase fusion (HEF) glycoprotein from ICV (C/Minnesota/33/2015) and IDV (D/Swine/Italy/199724-3/2015, D/Bovine/France/5920/2014, and D/Bovine/Ibaraki/7768/2016). The production of these PVs was optimised using different amount of human airway trypsin-like (HAT) protease to enhance HEF maturation, and the transduction efficiency was evaluated in multiple cell lines. Using these PVs, we established a pseudovirus-based microneutralisation (pMN) assay to measure neutralising antibody responses and adapted an esterase activity assay to evaluate PV.

View Article and Find Full Text PDF

Background: The converging biology between enveloped viruses and extracellular vesicles (EVs) has raised interest in the application of engineered EVs as antiviral therapeutics. Following the recent COVID-19 pandemic, EVs engineered with either the ACE2-receptor or Spike-protein have been proposed as strategy to either decoy SARS-CoV-2, or to compete with its cell entry. For generic use as a platform for future pandemic preparedness, a systematic and quantitative comparison of both strategies is required to assess their limitations and benefits across different variants of concern.

View Article and Find Full Text PDF

Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted on aged patients with COVID-19 pneumonia at a hospital in Italy aimed to define the immune responses related to the infection, particularly focusing on the effects of vaccination.
  • The study analyzed humoral responses (like antibody production) and cellular responses (like T-cell counts), comparing vaccinated and unvaccinated patients to understand their immunity levels and disease severity.
  • Results showed unvaccinated patients had worse outcomes and lower immune responses, with vaccinated individuals exhibiting higher antibody levels and T-cell counts, especially against the Delta variant.
View Article and Find Full Text PDF

Background: Although it is well known that the older people have been the most susceptible to COVID-19, there are conflicting data on the susceptibility of centenarians. Two epidemiological study have shown that older centenarians (> 101 years old at the time of the 2020 pandemic peak) are more resilient than the remaining centenarians, suggesting that this resilience might be linked to the 1918 Spanish Flu pandemic. To gain insight into this matter, specifically whether the resilience of older centenarians to SARS-CoV-2 infection is linked to the Spanish Flu they had been affected by, we conducted a retrospective serological study.

View Article and Find Full Text PDF

Introduction: The fruit bat is one of the most widely distributed fruit bats in Africa and known to be a reservoir for several pathogenic viruses that can cause disease in animals and humans. To assess the risk of zoonotic spillover, we conducted a serological survey of 304 serum samples from bats that were captured for human consumption in Makurdi, Nigeria.

Methods: Using pseudotyped viruses, we screened 304 serum samples for neutralizing antibodies against viruses from the and families.

View Article and Find Full Text PDF

Pseudotyped viruses (PVs) are molecular tools that can be used to study host-virus interactions and to test the neutralizing ability of serum samples, in addition to their better-known use in gene therapy for the delivery of a gene of interest. PVs are replication defective because the viral genome is divided into different plasmids that are not incorporated into the PVs. This safe and versatile system allows the use of PVs in biosafety level 2 laboratories.

View Article and Find Full Text PDF

Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a single antigen from the spike protein's receptor binding domain, which triggered strong immune responses in different animal models, including mice, rabbits, and guinea pigs against multiple SARS-related viruses.
  • * The use of DNA and mRNA-based vaccine strategies demonstrated effective protection against the Delta variant of SARS-CoV-2 in genetically modified mice, emphasizing the potential for broad-spectrum coronavirus vaccines to prevent zoonotic spillovers.
View Article and Find Full Text PDF

Infectious viral particles in bioaerosols generated during laparoscopic surgery place staff and patients at significant risk of infection and contributed to the postponement of countless surgical procedures during the COVID-19 pandemic causing excess deaths. The implementation of devices that inactivate viral particles from bioaerosols aid in preventing nosocomial viral spread. We evaluated whether electrostatic precipitation (EP) is effective in capturing and inactivating aerosolized enveloped and non-enveloped viruses.

View Article and Find Full Text PDF
Article Synopsis
  • The complement system plays a crucial role in the immune response to infections like SARS-CoV-2, with some evidence suggesting it can both harm (through cytokine storms) and protect against the virus.
  • This study specifically looked at the roles of two complement proteins, C1q and C4b-binding protein (C4BP), in preventing SARS-CoV-2 infection, focusing on their ability to bind to the virus's spike protein.
  • Results showed that C1q and C4BP not only reduced the virus's ability to enter cells but also decreased the expression of proinflammatory cytokines, suggesting they offer a protective effect during infection.
View Article and Find Full Text PDF

SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2.

View Article and Find Full Text PDF

Aims: Filoviruses encompass highly pathogenic viruses placing significant public health burden on countries affected. Efforts for improved diagnostics and surveillance are needed. The requirement for high-containment can be circumvented by using pseudotype viruses (PV), which can be handled safely, in tropism, drug screening, vaccine evaluation, and serosurveillance studies.

View Article and Find Full Text PDF

Coronaviruses infections, culminating in the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic beginning in 2019, have highlighted the importance of effective vaccines to induce an antibody response with cross-neutralizing activity. COVID-19 vaccines have been rapidly developed to reduce the burden of SARS-CoV-2 infections and disease severity. Cross-protection from seasonal human coronaviruses (hCoVs) infections has been hypothesized but is still controversial.

View Article and Find Full Text PDF

Introduction: Patients with gastrointestinal (GI) cancers have an increased risk of serious complications and death from SARS-CoV-2 infection. The immunogenicity of vaccines in patients with GI cancers receiving anti-cancer therapies is unclear. We conducted a prospective study to evaluate the prevalence of neutralizing antibodies in a cohort of GI cancer patients receiving chemotherapy following SARS-CoV-2 vaccination.

View Article and Find Full Text PDF

Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 virus, which causes COVID-19, became a global health crisis with significant health impacts.
  • Researchers are exploring whether antibodies from four common, seasonal coronaviruses, especially NL63, influence the severity of COVID-19.
  • Their study includes analyzing neutralizing antibodies in COVID-19 patients and healthcare workers, finding that while antibodies against seasonal coronaviruses are common, they do not effectively neutralize SARS-CoV-2, although NL63 antibodies increase post-infection or vaccination.
View Article and Find Full Text PDF

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2.

View Article and Find Full Text PDF

Some filoviruses can be transmitted to humans by zoonotic spillover events from their natural host and filovirus outbreaks have occured with increasing frequency in the last years. The filovirus Lloviu virus (LLOV), was identified in 2002 in Schreiber's bats (Miniopterus schreibersii) in Spain and was subsequently detected in bats in Hungary. Here we isolate infectious LLOV from the blood of a live sampled Schreiber's bat in Hungary.

View Article and Find Full Text PDF

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.

View Article and Find Full Text PDF

Background: Neutralizing antibodies are important for protection against the pandemic SARS-CoV-2 virus, and long-term memory responses determine the risk of re-infection or boosting after vaccination. T-cellular responses are considered important for partial protection against novel variants of concern.

Methods: A prospective cohort of hospitalized (n = 14) and community (n = 38) patients with rt-PCR confirmed SARS-CoV-2 infection were recruited.

View Article and Find Full Text PDF

Background: COVID-19 vaccines have demonstrated effectiveness in reducing SARS-CoV-2 mild and severe outcomes. In vaccinated subjects with SARS-CoV-2 history, RBD-specific IgG and pseudovirus neutralization titers were rapidly recalled by a single BTN162b2 vaccine dose to higher levels than those in naïve recipients after the second dose, irrespective of waning immunity. In this study, we inspected the long-term kinetic and neutralizing responses of S-specific IgG induced by two administrations of BTN162b2 vaccine in infection-naïve subjects and in subjects previously infected with SARS-CoV-2.

View Article and Find Full Text PDF

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP.

View Article and Find Full Text PDF