Publications by authors named "Piero Pileri"

Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology.

View Article and Find Full Text PDF

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity.

View Article and Find Full Text PDF

The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level.

View Article and Find Full Text PDF

SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses.

View Article and Find Full Text PDF

As the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). Here, we evaluate the potency of the previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryoelectron microscopy (cryo-EM) and X-ray crystallography. We show that mAb J08 has low nanomolar affinity against most VoCs and binds high on the receptor binding domain (RBD) ridge, away from many VoC mutations.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs. ). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level.

View Article and Find Full Text PDF

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents show a rather limited efficacy. We have recently demonstrated that the atypical cadherin FAT1 is a specific marker of CRC and that the FAT1-specific monoclonal antibody mAb198.

View Article and Find Full Text PDF

Tectonic family member 2 () encodes a transmembrane protein that belongs to the tectonic family, which is involved in ciliary functions. Previous studies have demonstrated the role of tectonics in regulating a variety of signaling pathways at the transition zone of cilia. However, the role of tectonics in cancer is still unclear.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are highly activated in cancer and involved in tumorigenesis and resistance to anti-cancer therapy. UPR is becoming a promising target of anti-cancer therapies. Thus, the identification of UPR components that are highly expressed in cancer could offer new therapeutic opportunity.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents have limited efficacy.

Methods: The atypical cadherin FAT1 was discovered as a novel CRC-associated protein by using a monoclonal antibody (mAb198.

View Article and Find Full Text PDF

Background: Herein, we demonstrated the use of a newly generated anti FAT1 antibody (clone mAB198.3) for intracellular delivery of anionic gold NPs, to form active targeting Au nanoparticles with high payload characteristics.

Methods: In vitro characterizations were determined by DLS, confocal microscopy, TEM, western blot, MALDI-TOF MS/MS analysis, MTT, ICP-MS and flow cytometry analysis.

View Article and Find Full Text PDF

Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known.

View Article and Find Full Text PDF

The YOMICS™ antibody library (http://www.yomics.com/) presented in this article is a new collection of 1559 murine polyclonal antibodies specific for 1287 distinct human proteins.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) causes chronic liver disease that often leads to cirrhosis and hepatocellular carcinoma. In animal studies, chimpanzees were protected against chronic infection following experimental challenge with either homologous or heterologous HCV genotype 1a strains which predominate in the USA and Canada. We describe the first in humans clinical trial of this prophylactic HCV vaccine.

View Article and Find Full Text PDF

As the human tetraspanin CD81 binds hepatitis C virus (HCV) envelope glycoprotein E2, we addressed the role CD81 may play in cellular trafficking of HCV envelope proteins. Studies on HCV life cycle are complicated by the lack of a robust cell culture system; we therefore transfected mammalian cells with HCV E1-E2 cDNA, with or without human CD81 (huCD81) cDNA. In the absence of huCD81, HCV envelope proteins are almost completely retained in the endoplasmic reticulum.

View Article and Find Full Text PDF

We have expressed and characterized the severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein in cDNA-transfected mammalian cells. The full-length spike protein (S) was newly synthesized as an endoglycosidase H (endo H)-sensitive glycoprotein (gp170) that is further modified into an endo H-resistant glycoprotein (gp180) in the Golgi apparatus. No substantial proteolytic cleavage of S was observed, suggesting that S is not processed into head (S1) and stalk (S2) domains as observed for certain other coronaviruses.

View Article and Find Full Text PDF