Anesthetics such as ketamine and thiopental, commonly used for inducing unconsciousness, have distinct effects on neuronal activity, metabolism, and cardiovascular and respiratory systems. Ketamine increases heart rate and blood pressure while preserving respiratory function, whereas thiopental decreases both and can cause respiratory depression. This study investigates the impact of ketamine (100 mg/kg) and thiopental (45 mg/kg) on ultraweak photon emission (UPE), oxidative-nitrosative stress, and antioxidant capacity in isolated rat brains.
View Article and Find Full Text PDFObjectives: To build datasets containing useful information from drug databases and recommend a list of drugs to physicians and patients with high accuracy by considering a wide range of features of people, diseases, and chemicals.
Methods: A comprehensive pharmaceutical recommendation system was designed based on the features of people, diseases, and medicines extracted from two major drug databases and the created datasets of patients and drug information. Then, the recommendation was given based on recommender system algorithms using patient and caregiver ratings and the knowledge obtained from drug specifications and interactions.
In an innovative experiment, we detected ultraweak photon emission (UPE) from the hippocampus of male rat brains and found significant correlations between Alzheimer's disease (AD), memory decline, oxidative stress, and UPE intensity. These findings may open up novel methods for screening, detecting, diagnosing, and classifying neurodegenerative diseases, particularly AD. The study suggests that UPE from the brain's neural tissue can serve as a valuable indicator.
View Article and Find Full Text PDFStudying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition.
View Article and Find Full Text PDFAll living cells, including neurons, generate ultra-weak photon emission (UPE) during biological activity, and in particular, in the brain, it has been shown that UPE is correlated with neuronal activity and associated metabolic processes. Various intracellular factors, as well as external factors, can reduce or increase the intensity of UPE. In this study, we have used Methamphetamine (METH) as one potentially effective external factor, which is a substance that has the property of stimulating the central nervous system.
View Article and Find Full Text PDFFace recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process.
View Article and Find Full Text PDFQuantum computing is a new and advanced topic that refers to calculations based on the principles of quantum mechanics. It makes certain kinds of problems be solved easier compared to classical computers. This advantage of quantum computing can be used to implement many existing problems in different fields incredibly effectively.
View Article and Find Full Text PDFThe present paper examines the viability of a radically novel idea for brain-computer interface (BCI), which could lead to novel technological, experimental, and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine.
View Article and Find Full Text PDFToxicity monitoring of environmental pollutants especially petroleum hydrocarbons as priority pollutants is an important environmental issue. This study addresses a rapid, sensitive and cost effective method for the detection of total petroleum hydrocarbons (TPHs) using Aliivibrio fischeri bioluminescence inhibition bioassay. At the first step, the optimum conditions including time, pH and temperature for growth of A.
View Article and Find Full Text PDFConvolutional neural networks (CNN) have enabled significant progress in speech recognition, image classification, automotive software engineering, and neuroscience. This impressive progress is largely due to a combination of algorithmic breakthroughs, computation resource improvements, and access to a large amount of data. In this paper, we focus on the automated detection of autism spectrum disorder (ASD) using CNN with a brain imaging dataset.
View Article and Find Full Text PDFNeurons like other living cells may have ultraweak photon emission (UPE) during neuronal activity. This study is aimed to evaluate UPE from neural stem cells (NSC) during their serial passaging and differentiation. We also investigate whether the addition of silver nanoparticles (AgNPs) or enhancement of UPE (by AgNPs or mirror) affect the differentiation of NSC.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2018
A selectivity filter is a gate in ion channels that is responsible for the selection and fast conduction of particular ions across the membrane (with high throughput rates of 10 ions s and a high 1:10 discrimination rate between ions). It is made of four strands as the backbone, and each strand is composed of sequences of five amino acids connected by peptide units H-N-C=O in which the main molecules in the backbone that interact with ions in the filter are carbonyl (C=O) groups that mimic the transient interactions of ion with binding sites during ion conduction. It has been suggested that quantum coherence and possible emergence of resonances in the backbone carbonyl groups may play a role in mediating ion conduction and selectivity in the filter.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
March 2018
In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications.
View Article and Find Full Text PDFCellular luminescence is the emission of photons by living cells due to various biophysical and biochemical processes, mostly associated with cellular metabolism. In this review paper we summarize today's understanding of four luminescence-dependent phenomena in the eye, i.e.
View Article and Find Full Text PDFDespite some inconclusive experimental evidences for the vibrational model of olfaction, the validity of the model has not been examined yet and therefore it suffers from the lack of conclusive experimental support. Here, we generalize the model and propose a numerical analysis of the dissipative odorant-mediated inelastic electron tunneling mechanism of olfaction, to be used as a potential examination in experiments. Our analysis gives several predictions on the model such as efficiency of elastic and inelastic tunneling of electrons through odorants, sensitivity thresholds in terms of temperature and pressure, isotopic effect on sensitivity, and the chiral recognition for discrimination between the similar and different scents.
View Article and Find Full Text PDFThe mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels.
View Article and Find Full Text PDFToday, there is an increased interest in research on lysergic acid diethylamide (LSD) because it may offer new opportunities in psychotherapy under controlled settings. The more we know about how a drug works in the brain, the more opportunities there will be to exploit it in medicine. Here, based on our previously published papers and investigations, we suggest that LSD-induced visual hallucinations/phosphenes may be due to the transient enhancement of bioluminescent photons in the early retinotopic visual system in blind as well as healthy people.
View Article and Find Full Text PDFFor several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g.
View Article and Find Full Text PDFPhosphenes are experienced sensations of light, when there is no light causing them. The physiological processes underlying this phenomenon are still not well understood. Previously, we proposed a novel biopsychophysical approach concerning the cause of phosphenes based on the assumption that cellular endogenous ultra-weak photon emission (UPE) is the biophysical cause leading to the sensation of phosphenes.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2015
In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter.
View Article and Find Full Text PDFVoltage-gated channel proteins cooperate in the transmission of membrane potentials between nerve cells. With the recent progress in atomic-scaled biological chemistry, it has now become established that these channel proteins provide highly correlated atomic environments that may maintain electronic coherences even at warm temperatures. Here we demonstrate solutions of the Schrödinger equation that represent the interaction of a single potassium ion within the surrounding carbonyl dipoles in the Berneche-Roux model of the bacterial KcsA model channel.
View Article and Find Full Text PDF