Understanding the interactions between metal-based nanoparticles and biological systems in complex environments (, the human body, soils, and marine settings) remains challenging, especially at single-cell and nanoscale levels. Capturing the dynamics of these interactions, such as metal distribution, nanoparticle growth, or degradation, in their native state () is particularly difficult. Here, we demonstrate the direct measurement of iron content in hydrated, magnetite-biomineralizing magnetotactic bacteria using synchrotron-based nanobeam-scanning X-ray fluorescence microscopy combined with a liquid cell environment.
View Article and Find Full Text PDFBacterial motility is typically studied in bulk solution, while their natural habitats often are complex environments. Here, we produced microfluidic channels that contained sediment-mimicking obstacles to study swimming of magnetotactic bacteria in a near-realistic environment. Magnetotactic bacteria are microorganisms that form chains of nanomagnets and that orient in Earth's magnetic field.
View Article and Find Full Text PDFEarthquake-triggered landslides show three important characteristics: they are often responsible for a considerable proportion of the damage sustained during mountain region earthquakes, they are non-randomly distributed across space, and they continue to evolve in the years after the earthquake. Despite this, planning for future earthquakes rarely takes into consideration either landslides or their evolution with time. Here we couple a unique timeseries of mapped landslides between 2014-2020 across the area of Nepal impacted by the 2015 Mw 7.
View Article and Find Full Text PDFProton transport across lipid membranes is one of the most fundamental reactions that make up living organisms. In vitro, however, the study of proton transport reactions can be very challenging due to limitations imposed by proton concentrations, compartment size, and unstirred layers as well as buffer exchange and buffer capacity. In this study, we have developed a proton permeation assay based on the microfluidic trapping of giant vesicles enclosing the pH-sensitive dye pyranine to address some of these challenges.
View Article and Find Full Text PDFJ Strength Cond Res
December 2023
Lunn, DE, Nicholson, G, Cooke, M, Crespo, R, Robinson, T, Price, RJ, and Walker, J. Discrete hamstring: quadriceps strength ratios do not represent angle-specific ratios in Premier League soccer players. J Strength Cond Res 37(12): 2417-2422, 2023-This study compared angle-specific hamstring:quadriceps (H:Q) ratios with their discrete counterparts during strength testing in professional male soccer players.
View Article and Find Full Text PDFGlacial lake outburst floods (GLOFs) represent a major hazard and can result in significant loss of life. Globally, since 1990, the number and size of glacial lakes has grown rapidly along with downstream population, while socio-economic vulnerability has decreased. Nevertheless, contemporary exposure and vulnerability to GLOFs at the global scale has never been quantified.
View Article and Find Full Text PDFThe endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate.
View Article and Find Full Text PDFGram-negative bacteria are equipped with a cell wall that contains a complex matrix of lipids, proteins, and glycans, which form a rigid layer protecting bacteria from the environment. Major components of this outer membrane are the high-molecular weight and amphiphilic lipopolysaccharides (LPSs). They form the extracellular part of a heterobilayer with phospholipids.
View Article and Find Full Text PDFFrom primary tumours and disseminating to secondary organs, cancer cells experience a wide variety of fluid flow profiles when passing through blood vessels or the lymphatic system before extravasation. Sinusoidal capillaries are a common site for extravasation. Therefore, we aim to investigate how metastatic cancer cells react to a biophysical cue such as capillary fluid flow by quantifying its effect on metastatic cell cycle progression, motility, cell and nuclear volume, and morphology.
View Article and Find Full Text PDFFront Sports Act Living
August 2022
The aims of this study were: (1) to quantify interlimb asymmetries in EPL soccer players in the context of kicking limb preference and (2) to establish the relationship between interlimb asymmetries and measures of physical performance. Twenty-two players (age: 21.8 ± 4.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
July 2023
Purpose: The unprecedented COVID-19 experience has posed severe challenges to the health care system and several of these are documented in orthopaedic surgery; however, although the pandemic has also brought positive changes, these have not been precisely documented. The purpose of this survey is to identify positive perceptions by orthopaedic surgeons at an international level.
Methods: A cross-sectional, web-based survey inviting 120 orthopaedic surgeons was conducted in April 2020 querying about the positive lessons COVID-19 would teach us.
J Am Soc Mass Spectrom
September 2022
The multi-attribute method (MAM) was conceived as a single assay to potentially replace multiple single-attribute assays that have long been used in process development and quality control (QC) for protein therapeutics. MAM is rooted in traditional peptide mapping methods; it leverages mass spectrometry (MS) detection for confident identification and quantitation of many types of protein attributes that may be targeted for monitoring. While MAM has been widely explored across the industry, it has yet to gain a strong foothold within QC laboratories as a replacement method for established orthogonal platforms.
View Article and Find Full Text PDFSwimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion.
View Article and Find Full Text PDFBeyond the more conventional single-cell segmentation and tracking, single-cell cycle dynamics is gaining a growing interest in the field of cell biology. Thanks to sophisticated systems, such as the fluorescent ubiquitination-based cell cycle indicator (FUCCI), it is now possible to study cell proliferation, migration, changes in nuclear morphology and single cell cycle dynamics, quantitatively and in real time. In this work, we introduce FUCCItrack, an all-in-one, semi-automated software to segment, track and visualize FUCCI modified cell lines.
View Article and Find Full Text PDFChem Commun (Camb)
March 2022
The ability to build synthetic cellular populations from the bottom-up provides the groundwork to realize minimal living tissues comprising single cells which can communicate and bridge scales into multicellular systems. Engineered systems made of synthetic micron-sized compartments and integrated reaction networks coupled with mathematical modeling can facilitate the design and construction of complex and multiscale chemical systems from the bottom-up. Toward this goal, we generated populations of monodisperse liposomes encapsulating cell-free expression systems (CFESs) using double-emulsion microfluidics and quantified transcription and translation dynamics within individual synthetic cells of the population using a fluorescent Broccoli RNA aptamer and mCherry protein reporter.
View Article and Find Full Text PDFEffective metabolic pathways are essential for the construction of in vitro systems mimicking the biochemical complexity of living cells. Such pathways require the inclusion of a metabolic branch that ensures the availability of reducing equivalents. Here, we built a minimal enzymatic pathway confinable in the lumen of liposomes, in which the redox status of the nicotinamide cofactors NADH and NADPH is controlled by an externally provided formate.
View Article and Find Full Text PDFMolecular crowding is an inherent feature of cell interiors. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (poly(ethylene glycol) and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs exhibit highly curved structures like nanotubes.
View Article and Find Full Text PDFThe bottom-up assembly of multicompartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform that is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments, each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase.
View Article and Find Full Text PDFBiophysical cues such as osmotic pressure modulate proliferation and growth arrest of bacteria, yeast cells and seeds. In tissues, osmotic regulation takes place through blood and lymphatic capillaries and, at a single cell level, water and osmoregulation play a critical role. However, the effect of osmotic pressure on single cell cycle dynamics remains poorly understood.
View Article and Find Full Text PDFMicrofluidic production of giant lipid vesicles presents a paradigm-shift in the development of artificial cells. While production is high-throughput and the lipid vesicles are mono-disperse compared to bulk methods, current technologies rely heavily on the addition of additives such as surfactants, glycerol and even ethanol. Here we present a microfluidic method for producing biomimetic surfactant-free and additive-free giant unilamellar vesicles.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
April 2021
The Multi-Attribute Method (MAM) Consortium was initially formed as a venue to harmonize best practices, share experiences, and generate innovative methodologies to facilitate widespread integration of the MAM platform, which is an emerging ultra-high-performance liquid chromatography-mass spectrometry application. Successful implementation of MAM as a purity-indicating assay requires new peak detection (NPD) of potential process- and/or product-related impurities. The NPD interlaboratory study described herein was carried out by the MAM Consortium to report on the industry-wide performance of NPD using predigested samples of the NISTmAb Reference Material 8671.
View Article and Find Full Text PDF