Publications by authors named "Tom Clandinin"

Recently adopted regulatory standards on infant and follow-on formula for the European Union stipulate that from February 2020 onwards, all such products marketed in the European Union must contain 20-50 mg omega-3 DHA (22:6n-3) per 100 kcal, which is equivalent to about 0.5-1% of fatty acids (FAs) and thus higher than typically found in human milk and current infant formula products, without the need to also include ω-6 arachidonic acid (AA; 20:4n-6). This novel concept of infant formula composition has given rise to concern and controversy because there is no accountable evidence on its suitability and safety in healthy infants.

View Article and Find Full Text PDF

Background: Preclinical studies reveal associations between intestinal ganglioside content and inflammatory bowel disease (IBD). Since a low level of ganglioside is associated with higher production of proinflammatory signals in the intestine, it is important to determine safety and bioavailability of dietary ganglioside for application as a potential therapeutic agent.

Materials And Methods: Healthy volunteers (HVs; n = 18) completed an 8-week supplementation study to demonstrate safety and bioavailabity of ganglioside consumption.

View Article and Find Full Text PDF

Aim: To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease.

Methods: Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn's disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry.

View Article and Find Full Text PDF

A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it.

View Article and Find Full Text PDF
Article Synopsis
  • The Functional Foods for Health Symposium, held on April 9, 2011, focused on the health benefits of food beyond basic nutrition.
  • Emerging lipid nutrition science was a key topic, exploring how lipids influence various physiological pathways.
  • These pathways are linked to significant health issues, including obesity, cognitive development, and inflammation, suggesting a need for a revised understanding of lipids' role in health and disease.
View Article and Find Full Text PDF

Throughout our lifetime, the intestine changes. Some alterations in its form and function may be genetically determined, and some are the result of adaptation to diet, temperature, or stress. The critical period programming of the intestine can be modified, such as from subtle differences in the types and ratios of n3:m6 fatty acids in the diet of the pregnant mother, or in the diet of the weanlings.

View Article and Find Full Text PDF

Gangliosides are sialic acid-containing glycosphingolipids. Gangliosides are found in human milk; understanding of the potential role of gangliosides in infant development is emerging, with suggested roles in the brain and gut. Ganglioside accretion in the developing brain is highest in utero and in early neonatal life, during the periods of dendritic branching and new synapse formation.

View Article and Find Full Text PDF

The process of intestinal adaptation ("enteroplasticity") is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-2 (GLP-2) enhances intestinal absorption in adult animals. Glucocorticosteroids accelerate the ontogeny of the intestine and increase sugar uptake in adult animals. Modifying the maternal diet during lactation alters nutrient uptake in the offspring.

View Article and Find Full Text PDF

Both glucagon-like peptide 2 (GLP-2) and glucocorticosteroids enhance intestinal uptake in mature animals. Maternal stimuli may cause intestinal adaptation in the offspring. We hypothesized that administering GLP-2, dexamethasone (DEX) or a combination of GLP-2+DEX to rat dams during pregnancy and lactation would enhance intestinal sugar uptake in their offspring.

View Article and Find Full Text PDF

Mice lacking I-FABP (encoded by the Fabp2 gene) exhibit a gender dimorphic response to a high fat/cholesterol diet challenge characterized by hepatomegaly in male I-FABP-deficient mice. In this study, we determined if this gender-specific modification of liver mass in mice lacking I-FABP is attributable to the high fat content of the diet alone and whether hepatic Fabp1 gene (encodes L-FABP) expression contributes to this difference. Wild-type and Fabp2-/- mice of both genders were fed a diet enriched with either polyunsaturated or saturated fatty acids (PUFA or SFA, respectively) in the absence of cholesterol.

View Article and Find Full Text PDF

Background: The intestine adapts to environmental stimuli, such as modifications in dietary lipids. Dietary lipids modify brush border membrane (BBM) permeability and nutrient transporter activities. Gangliosides (GANG) are glycolipids present in human milk, but they are present only in low amounts in infant formula.

View Article and Find Full Text PDF

Intestinal function in young animals is influenced by maternal factors, such as alterations in the maternal diet. Glucagon-like peptide 2 (GLP-2) enhances intestinal growth and absorption in mature animals. Glucocorticosteroids induce intestinal maturation in neonates and increase sugar uptake in adult animals.

View Article and Find Full Text PDF

Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD). Both total parenteral and enteral nutrition provide important supportive therapy for IBD patients, but in adults these are not useful for primary therapy. Dietary intervention with omega-3 polyunsaturated fatty acids contained in fish oil may be useful for the care of IBD patients, and recent studies have stressed the role of PPAR on NFkappaB activity on the potential beneficial effect of dietary lipids on intestinal function.

View Article and Find Full Text PDF

Glucagon-like peptide-2 (GLP-2) enhances intestinal growth and absorption in mature animals, and glucocorticosteroids (GC) increase the sugar and lipid uptake in adult animals. However, the role of GC and GLP-2 in the ontogeny of lipid absorption is unknown. We hypothesized that GLP-2 and the GC dexamethasone (DEX), when administrated to rat dams during pregnancy and lactation, would enhance lipid uptake in the offspring.

View Article and Find Full Text PDF

Background: The intestine adapts morphologically or functionally in response to environmental stimuli. Dietary lipids modify brush border membrane (BBM) permeability and nutrient transporter activities. Gangliosides (GANG) are glycolipids in human milk that are present only in low amounts in infant formula.

View Article and Find Full Text PDF

Objectives: Glucagon-like peptide (GLP)-2 enhances nutrient uptake in adult animals. Glucocorticosteroids accelerate intestinal ontogeny and increase nutrient uptake in adult animals. We hypothesized that administering GLP-2 and dexamethasone (DEX) to suckling rats will enhance sugar uptake and that this effect persists into the postweaning period.

View Article and Find Full Text PDF

Glucocorticosteroids such as dexamethasone (Dex) increase sugar and lipid uptake in adult animals and accelerate the development of the immature intestine. The effect of Dex on the ontogeny of lipid absorption is unknown. In adult rats, glucagon-like peptide-2 (GLP-2) has a trophic effect on the intestine and enhances nutrient absorption.

View Article and Find Full Text PDF

A reduction in nutrient absorption may contribute to malnourishment in the elderly. The objectives of this study were to determine the effects of aging on the absorption of fructose in rats, as well as the mechanisms of these adaptive changes. Male Fischer 344 rats aged 1, 9, and 24 months were fed standard Purina chow for 2 weeks (PMI #5001, PMI Nutritionals, Brentwood, MO).

View Article and Find Full Text PDF

Background: Glucagon-like peptide 2 (GLP-2) has a trophic effect on the intestine and enhances intestinal absorption in adult animals, but its effect in young rats is unknown. Glucocorticosteroids accelerate the ontogeny of the intestine, and in adult animals they increase the uptake of sugars and lipids. We hypothesized that GLP-2 and dexamethasone (DEX), when administrated to lactating rat dams, will enhance lipid uptake in the suckling and weanling offspring.

View Article and Find Full Text PDF

Glucocorticosteroids enhance sugar digestive and absorptive functions of the intestine, but their effect on lipid uptake is unknown. Modifications in dietary lipids alter the nutrient transport properties of the intestine. The influence of 4 weeks' treatment with budesonide (BUD), prednisone (PRED), or control vehicle in weanling rats fed either an isocaloric semisynthetic saturated fatty acid diet (SFA) or a polyunsaturated fatty acid diet (PUFA), on the uptake of lipids was assessed using everted gut rings.

View Article and Find Full Text PDF