Publications by authors named "Tiago G Morais"

Human intervention on land enhances the supply of provisioning ecosystem services, but also exerts pressures on ecosystem functioning. We utilize the Human Appropriation of Net Primary Production (HANPP) framework to assess these relations in European agriculture, for 220 NUTS2 regions. We put a particular focus on individual land system components, i.

View Article and Find Full Text PDF

Regionalization of land use (LU) impact in life cycle assessment (LCA) has gained relevance in recent years. Most regionalized models are statistical, using highly aggregated spatial units and LU classes (e.g.

View Article and Find Full Text PDF

Global food systems contribute to climate change, the transgression of planetary boundaries and deforestation. An improved understanding of the environmental impacts of different food system futures is crucial for forging strategies to sustainably nourish a growing world population. We here quantify the greenhouse gas (GHG) emissions of global food system scenarios within a biophysically feasible "option space" in 2050 comprising all scenarios in which biomass supply - calculated as function of agricultural area and yields - is sufficient to cover biomass demand - derived from human diets and the feed demand of livestock.

View Article and Find Full Text PDF

Assessments of the global carbon (C) cycle typically rely on simplified models which consider large areas as homogeneous in terms of the response of soils to land use or consider very broad land classes. For example, "cropland" is typically modelled as an aggregation of distinct practices and individual crops over large regions. Here, we use the process-based Rothamsted soil Carbon Model (RothC model), which has a history of being successfully applied at a global scale, to calculate attainable SOC stocks and C mineralization rates for each of c.

View Article and Find Full Text PDF

Land occupation and transformation change soil organic carbon (SOC) stocks, which are a priority indicator for biotic production potential (BPP) in life cycle impact assessment (LCIA). SOC is a potential umbrella indicator for land use-related impacts, but global LCIA characterization models have never been sufficiently regionalized. Regeneration times required for the calculation of transformation impacts are unknown and can only be estimated through expert judgment or using additional assumptions.

View Article and Find Full Text PDF

Life cycle inventory (LCI) regionalization (i.e., the determination of input and output flows from production processes at a subcountry scale) is a priority in life cycle assessment (LCA) studies, particularly in the agri-food sector.

View Article and Find Full Text PDF