Wildfires and land use play a central role in the long-term carbon (C) dynamics of forested ecosystems of the United States. Understanding their linkages with changes in biomass, resource use, and consumption in the context of climate change mitigation is crucial. We reconstruct a long-term C balance of forests in the contiguous U.
View Article and Find Full Text PDFSci Total Environ
February 2024
Agriculture is an important contributor to greenhouse gas (GHG) emissions. While the development of agricultural GHG emissions on national and global scales is well studied for the last three to six decades, little is known about their trajectory and drivers over longer periods. In this article, we address this research gap by calculating and analyzing GHG emissions related to agriculture in Austria from 1830 to 2018.
View Article and Find Full Text PDFUrbanization processes are accompanied by growing global challenges for food systems. Urban actors are increasingly striving to address these challenges through a focus on sustainable diets. However, transforming food systems towards more sustainable diets is challenging and it is unclear what the local scope of action might be.
View Article and Find Full Text PDFWood products function as carbon storage even after being harvested from forests. This has garnered attention in relevance to climate change countermeasures. In the progress of efforts toward climate change mitigation by private companies, the effective use of wood products has been an important measure.
View Article and Find Full Text PDFGlobal food systems contribute to climate change, the transgression of planetary boundaries and deforestation. An improved understanding of the environmental impacts of different food system futures is crucial for forging strategies to sustainably nourish a growing world population. We here quantify the greenhouse gas (GHG) emissions of global food system scenarios within a biophysically feasible "option space" in 2050 comprising all scenarios in which biomass supply - calculated as function of agricultural area and yields - is sufficient to cover biomass demand - derived from human diets and the feed demand of livestock.
View Article and Find Full Text PDFGlob Change Biol Bioenergy
November 2019
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose-grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate-friendly energy supply.
View Article and Find Full Text PDFThe size and structure of the socioeconomic metabolism are key for the planet's sustainability. In this article, we provide a consistent assessment of the development of material flows through the global economy in the period 1900-2015 using material flow accounting in combination with results from dynamic stock-flow modelling. Based on this approach, we can trace materials from extraction to their use, their accumulation in in-use stocks and finally to outflows of wastes and emissions and provide a comprehensive picture of the evolution of societies metabolism during global industrialization.
View Article and Find Full Text PDFCarbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon.
View Article and Find Full Text PDFGlob Change Biol Bioenergy
March 2017
The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2017
Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term path-dependencies because of their longevity.
View Article and Find Full Text PDFSafeguarding the world's remaining forests is a high-priority goal. We assess the biophysical option space for feeding the world in 2050 in a hypothetical zero-deforestation world. We systematically combine realistic assumptions on future yields, agricultural areas, livestock feed and human diets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2013
Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity.
View Article and Find Full Text PDFFeeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges.
View Article and Find Full Text PDFThere is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a "food first" approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model.
View Article and Find Full Text PDF