Sericin (SS) serves as a natural adhesive, binding silk fibers within the silkworm cocoon and shielding them from environmental stresses. Commonly, SS-based films rely on additives to improve their physical properties. In this study, we developed an additive-free film composed of SS and chitosan (CS) in an ethanol environment, achieving enhanced tensile strength, elongation at break, and water retention and release capacity through structural modification of SS.
View Article and Find Full Text PDFThanh-Danh Nguyen, Dinh Quang Khieu, Nguyen Hoang Tuan and Mita Dasog introduce the themed collection on nanomaterials for catalysis and sensing.
View Article and Find Full Text PDFNanoscale Adv
January 2025
In this study, we introduce an synthesis technique for incorporating gold nanoparticles (AuNPs) into a magnetic nanocomposite made of glucosamine and alginate (GluN/Alg) ionotropic gelation. GluN acted as a reducing agent for gold ions, leading to the formation of AuNPs which embedded in the nanocomposite FeO@GluN/Alg. Analytical techniques confirmed the crystallite structure of the nanocomposite AuNPs/FeO@GluN/Alg, which had an average size of 30-40 nm.
View Article and Find Full Text PDFThis study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.
View Article and Find Full Text PDFThe toxicity of the contaminated powder contributed to toxic aflatoxins has been well-known in the literature. However, before this study, the specific fungal strain behind aflatoxin production remained unidentified. Our research aimed to isolate and identify fungi from the tainted sandwiches while also assessing the preservation of sandwiches in ambient conditions.
View Article and Find Full Text PDFTheragnostic platforms, which integrate therapeutic and diagnostic capabilities, have gained significant interest in drug research because of to their potential advantages. This study reports the development of a novel multifunctional nanoparticle carrier system based on poly(ᴅ,ʟ-lactic--glycolic acid) (PLGA) for the targeted delivery of the chemotherapeutic agent chlorambucil (CHL) and the imaging agent IR780. The approach in this study incorporates Pluronic F127-folate onto the PLGA nanoparticles, which enables targeted delivery to folate receptor-expressing cancer cells.
View Article and Find Full Text PDFIn recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe ions in water. AuNPs were synthesized using the aqueous extract of leaf as reductants and stabilizing agents.
View Article and Find Full Text PDFWe present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques.
View Article and Find Full Text PDFEfforts to improve the solar power conversion efficiencies of binary bulk heterojunction-type organic photovoltaic devices using an active layer consisting of a poly-(3-alkylthiophene) (P3AT) homopolymer and a suitable fullerene derivative face barriers caused by the intrinsic properties of homopolymers. To overcome such barriers, researchers might be able to chemically tailor homopolymers by means of monomer ratio-balanced block copolymerization to obtain preferable properties. Triblock copolymers consisting of three components-3-hexylthiophene (HT), 3-butylthiophene (BT), and 3-octylthiophene (OT)-were synthesized via Grignard metathesis (GRIM) polymerization.
View Article and Find Full Text PDFThe extraction of bioactive compounds, including essential oils and flavonoids, using organic solvents is a significant environmental concern. In this work, waste peel was the ingredient used to extract essential oil and naringin by conducting a supercritical CO technique with a two stage process. In the first stage, the extraction with only supercritical CO solvent showed a significant enhancement of the d-limonene component, up to 95.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2022
In this study, a simple, eco-friendly and low-cost approach was used to fabricate silver nanoparticles (AgNPs) from an aqueous extract of Gleditsia australis (GA) fruit. The nanoparticles synthesized in the optimal condition have an average size of 14 nm. The peroxidase-like activity of GA-AgNP in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in combination with hydrogen peroxide (HO) was investigated.
View Article and Find Full Text PDFA series of poly-3-alkylthiophenes (P3ATs) with butyl (P3BT), hexyl (P3HT), and octyl (P3OT) side-chains and well-defined molecular weights (MWs) were synthesized using Grignard metathesis polymerization. The MWs of P3HTs and P3OTs obtained via gel permeation chromatography agreed well with the calculated MWs ranging from approximately 10 to 70 kDa. Differential scanning calorimetry results showed that the crystalline melting temperature increased with increasing MWs and decreasing alkyl side-chain length, whereas the crystallinity of the P3ATs increased with the growth of MWs.
View Article and Find Full Text PDFThe diastereoselectivity of adducts in the addition reaction via the Felkin-Anh model is affected significantly by the steric effect of bulky groups. However, the influence of steric alkyl chain length has not been studied for the diastereoselectivity. In this work, we present a new strategy for the racemic synthesis of β-methyl alcohols to obtain various diastereomer ratios using the Felkin-Anh model.
View Article and Find Full Text PDFThis work presents a simply new method for in situ synthesis of gold nanoparticles (AuNPs) using the biodegradable polysaccharides. A novel composite of lactose/alginate (Lac/Alg) could be prepared easily through ionotropic gelation mechanism which can reduce in situ gold ions into AuNPs. Lactose plays a crucial role as a reducing reagent which are demonstrated by FTIR analysis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2020
Cardiovascular diseases account for the number one cause of deaths in the world. Part of the reason for such grim statistics is our limited understanding of the underlying mechanisms causing these devastating pathologies, which is made difficult by the invasiveness of the procedures associated with their diagnosis (e.g.
View Article and Find Full Text PDF-Oligocarrageenan (OC) is an effective biostimulator and a protector against disease infections for plants. However, the effect of OC molecular weight (MW) on plant growth is not fully understood. In this work, OCs with three different MWs (42, 17 and 4 kDa) was prepared by varying the degradation reaction time using ascorbic acid as a reagent.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2021
The emergent occurrence of sulfonamide species involving sulfadiazine (SDZ) and sulfamethazine (SMZ) in aquatic systems can cause a wide range of potential risks; hence, remediation strategies need to be necessary. Here, we develop the novel metal-organic framework-derived nanocomposite, and apply for the adsorption of SDZ and SMZ antibiotics. To assess the best-fitting kinetic (pseudo first-order, pseudo second-order) and isotherm (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Peterson, Sips, Toth, and Khan) models, a series of numerous statistical analysis was performed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2020
In the present study, cost-effective, and environmentally friendly fabrication of silver and gold nanoparticles was performed by using aqueous extract of waste corn-cob. The formation of the metallic nanoparticles (MNPs) was optimized by UV-Vis method. The phytoconstituents were responsible for reduction of silver and gold ions to silver nanoparticles (CC-AgNPs) and gold nanoparticles (CC-AuNPs) which were demonstrated by Fourier-transform infrared (FTIR) spectroscopy while formation of AgCl was attributed to the presence of chloride ions in the aqueous extract.
View Article and Find Full Text PDFMaterials (Basel)
August 2019
In this study, we investigated sulfate-modified BiVO with the high photocatalytic activity synthesized by a sol-gel method in the presence of thiourea, followed by the annealing process at different temperatures. Its structure was characterized by thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The BiVO synthesized in the presence of thiourea and calcined at 600 °C (T-BVO-600) exhibited the highest photocatalytic degradation efficiency of methylene blue (MB) in water; 98.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2019
Multiple sharp-edged gold nanostars were efficiently assembled on nanopipette tips through electrostatic interactions for use as a potent intracellular hypoxia-sensing Raman probe. Colloidal stability and surface immobilization were checked using scanning electron microscopy, light scattering, and zeta potential measurements. Site-specific intracellular hypoxia levels can be estimated in vitro and in vivo using Raman lancets (RL).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2018
This study presents an efficient and facile method for biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using aqueous extract of burdock root (BR), A. lappa, and their applications. The nanoparticles were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray, thermogravimetry, and differential thermal analysis.
View Article and Find Full Text PDFThis study presents an efficient and facile method for the trapping of Ag ions on hybrid nanocomposite based on 2-hydroxypropyl-β-cyclodextrin (HPCD) and alginate (Alg) in aqueous medium through ionotropic gelation mechanism and followed by in situ assembly of silver nanoparticles (AgNPs) using aqueous extract of Jasminum subtriplinerve leaves as a reducing agent. The nanocomposite AgNPs/HPCD/Alg was characterized by UV-vis, EDX, TEM, HR-TEM analysis. The AgNPs were found to be spherical shape and uniform size with an average diameter of 13.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2018
Zidovudine (AZT) adsorbed on colloidal gold nanoparticles (AuNPs) undergoes pH-induced conformational changes according to spectral changes in surface-enhanced Raman scattering (SERS). In acidic pH values conditions, AZT assumes the C-endo conformer, which binds more weakly to AuNPs than under neutral and alkaline conditions. In this study, density functional theory (DFT) calculations were performed; these calculations also supported the conformation-dependent binding energies.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
June 2018
We report a facile method for sample preparation and sensitive on-site detection of melamine in powdered infant formula and chocolate using Raman spectroscopy on sharp-edged gold nanostars (AuNSs). The aggregation of AuNSs by sodium chloride (1.2 M) facilitates the more sensitive detection of melamine in comparison with spherical gold nanoparticles (AuNPs).
View Article and Find Full Text PDFSensors (Basel)
November 2017
A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm to ~1504 cm on AuNPs at a high concentration of Cu above 1 μM.
View Article and Find Full Text PDF