Publications by authors named "Tatiana A Gurbich"

Summary: In recent years, there has been a surge in prokaryotic genome assemblies, coming from both isolated organisms and environmental samples. These assemblies often include novel species that are poorly represented in reference databases creating a need for a tool that can annotate both well-described and novel taxa, and can run at scale. Here, we present mettannotator-a comprehensive, scalable Nextflow pipeline for prokaryotic genome annotation that identifies coding and noncoding regions, predicts protein functions, including antimicrobial resistance, and delineates gene clusters.

View Article and Find Full Text PDF

Motivation: Metagenome-Assembled Genomes (MAGs) or Single-cell Amplified Genomes (SAGs) are often incomplete, with sequences missing due to errors in assembly or low coverage. This presents a particular challenge for the identification of true gene frequencies within a microbial population, as core genes missing in only a few assemblies will be mischaracterized by current pangenome approaches.

Results: Here, we present CELEBRIMBOR, a Snakemake pangenome analysis pipeline which uses a measure of genome completeness to automatically adjust the frequency threshold at which core genes are identified, enabling accurate core gene identification in MAGs and SAGs.

View Article and Find Full Text PDF

Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades.

View Article and Find Full Text PDF

An increasingly common output arising from the analysis of shotgun metagenomic datasets is the generation of metagenome-assembled genomes (MAGs), with tens of thousands of MAGs now described in the literature. However, the discovery and comparison of these MAG collections is hampered by the lack of uniformity in their generation, annotation and storage. To address this, we have developed MGnify Genomes, a growing collection of biome-specific non-redundant microbial genome catalogues generated using MAGs and publicly available isolate genomes.

View Article and Find Full Text PDF

Copy-number variants (CNVs) are an important part of human genetic variation. They can be benign or can play a role in human disease by creating dosage imbalances and disrupting genes and regulatory elements. Accurate identification and clinical annotation of CNVs is essential, however, manual evaluation of individual CNVs by clinicians is challenging on a large scale.

View Article and Find Full Text PDF

Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes.

View Article and Find Full Text PDF

Having an extra copy of a gene is thought to provide some functional redundancy, which results in a higher rate of evolution in duplicated genes. In this article, we estimate the impact of gene duplication on the selection of tuf paralogs, and we find that in the absence of gene conversion, tuf paralogs have evolved significantly slower than when gene conversion has been a factor in their evolution. Thus, tuf gene copies evolve under a selective pressure that ensures their functional uniformity, and gene conversion reduces selection against amino acid substitutions that affect the function of the encoded protein, EF-Tu.

View Article and Find Full Text PDF