Autonomous vehicles are rapidly advancing and have the potential to revolutionize transportation in the future. This paper primarily focuses on vehicle motion trajectory planning algorithms, examining the methods for estimating collision risks based on sensed environmental information and approaches for achieving user-aligned trajectory planning results. It investigates the different categories of planning algorithms within the scope of local trajectory planning applications for autonomous driving, discussing and differentiating their properties in detail through a review of the recent studies.
View Article and Find Full Text PDFThe personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach.
View Article and Find Full Text PDF