The hierarchical, multiphase organization of the nucleolus underlies ribosome biogenesis. Ribonucleoprotein particles that regulate ribosomal subunit assembly are heterogeneously disposed in the granular component (GC) of the nucleolus. However, the molecular origins of the GC's spatial heterogeneity and its association with ribosomal subunit assembly remain poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Clinical genomics sequencing is rapidly expanding the number of variants that need to be functionally elucidated. Interpreting genetic variants (i.e.
View Article and Find Full Text PDFBiomolecular condensates are cellular organelles formed through liquid-liquid phase separation (LLPS) that play critical roles in cellular functions including signaling, transcription, translation, and stress response. Importantly, condensate misregulation is associated with human diseases, including neurodegeneration and cancer among others. When condensate-forming biomolecules are fluorescently-labeled and examined with fluorescence microscopy they appear as illuminated foci, or puncta, in cells.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2021
In the current study, we report computational scores for advancing genomic interpretation of disease-associated genomic variation in members of the RAS family of genes. For this purpose, we applied 31 sequence- and 3D structure-based computational scores, chosen by their breadth of biophysical properties. We parametrized our data by assembling a numerically homogenized experimentally-derived dataset, which when use in our calculations reveal that computational scores using 3D structure highly correlate with experimental measures (e.
View Article and Find Full Text PDFUnlabelled: NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains.
View Article and Find Full Text PDFDisruptor of telomeric silencing 1-like (DOT1L) is the only non-SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis.
View Article and Find Full Text PDFBackground: Kabuki syndrome is a genetic disorder that affects several body systems and presents with variations in symptoms and severity. The syndrome is named for a common phenotype of faces resembling stage makeup used in a Japanese traditional theatrical art named kabuki. The most frequent cause of this syndrome is mutations in the H3K4 family of histone methyltransferases while a smaller percentage results from genetic alterations affecting the histone demethylase, KDM6A.
View Article and Find Full Text PDFMotivation: Protein-coding genetic alterations are frequently observed in Clinical Genetics, but the high yield of variants of uncertain significance remains a limitation in decision making. RAS-family GTPases are cancer drivers, but only 54 variants, across all family members, fall within well-known hotspots. However, extensive sequencing has identified 881 non-hotspot variants for which significance remains to be investigated.
View Article and Find Full Text PDFParkinsonism Relat Disord
August 2020
Introduction: Perry syndrome, also recognized as Perry disease, is a rare autosomal dominant disorder characterized by midlife-onset atypical parkinsonism, apathy or depression, respiratory failure and weight loss caused by a mutation in the Dynactin (DCTN1) gene.
Case Description: A fifty-six years-old adopted male presented with atypical parkinsonism with bradykinesia and postural instability, apathy, weight loss, and recurrent respiratory failure due to central hypoventilation requiring tracheostomy.
Methods And Results: Clinical workup revealed a novel DCTN1 p.
We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca) by integrating coarse-grained models and all-atomistic simulations with nonequilibrium physics. We focused on binding between CaM and two specific targets, Ca/CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca signaling pathways in neurons. It was shown experimentally that Ca/CaM (holoCaM) binds to the CaMKII peptide with overwhelmingly higher affinity than Ca-free CaM (apoCaM); the binding of CaMKII peptide to CaM in return increases the Ca affinity for CaM.
View Article and Find Full Text PDFEfficacies, toxicities, and resistance mechanisms of chemotherapy drugs, such as oxaliplatin and 5-fluorouracil (5-FU), vary widely among various categories and subcategories of colon cancers. By understanding the differences in the drug efficacy and resistance at the level of protein-protein networks, we identified the correlation between the drug activity of oxaliplatin/5-FU and gene variations from the US National Cancer Institute-60 human cancer cell lines. The activity of either of these drugs is correlated with specific amino acid variant(s) of KRAS and other genes from the signaling pathways of colon cancer progression.
View Article and Find Full Text PDFPhosphaplatins, platinum(II) and platinum(IV) complexes coordinated to a pyrophosphate moiety, exhibit excellent antitumor activities against a variety of cancers. To determine whether phosphaplatins trigger resistance to treatment by engaging DNA damage repair genes, a yeast genome-wide fitness assay was used. Treatment of yeast cells with pyrodach-2 (D2) or pyrodach-4 (D4) revealed no particular sensitivity to nucleotide excision repair, homologous recombination repair, or postreplication repair when compared with platin control compounds.
View Article and Find Full Text PDFCharge-charge interactions play an important role in thermal stability of proteins. We employed an all-atom, native-topology-based model with non-native electrostatics to explore the interplay between folding dynamics and stability of TNfn3 (the third fibronectin type III domain from tenascin-C). Our study elucidates the role of charge-charge interactions in modulating the folding energy landscape.
View Article and Find Full Text PDFProtein-protein interactions play important roles in the control of every cellular process. How natural selection has optimized protein design to produce molecules capable of binding to many partner proteins is a fascinating problem but not well understood. Here, we performed a combinatorial analysis of protein sequence evolution and conformational dynamics to study how calmodulin (CaM), which plays essential roles in calcium signaling pathways, has adapted to bind to a large number of partner proteins.
View Article and Find Full Text PDFCalmodulin (CaM) is a primary calcium (Ca(2+) )-signaling protein that specifically recognizes and activates highly diverse target proteins. We explored the molecular basis of target recognition of CaM with peptides representing the CaM-binding domains from two Ca(2+) -CaM-dependent kinases, CaMKI and CaMKII, by employing experimentally constrained molecular simulations. Detailed binding route analysis revealed that the two CaM target peptides, although similar in length and net charge, follow distinct routes that lead to a higher binding frustration in the CaM-CaMKII complex than in the CaM-CaMKI complex.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2013
The N-terminal receiver domain of protein NtrC (NtrC(r)) exhibits allosteric transitions between the inactive (unphosphorylated) and active (phosphorylated) state on the microsecond time scale. Using a coarse-grained variational model with coupled energy basins, we illustrate that significant loss of conformational flexibility is the key determinant of the inactive (I) → active (A) state transition mechanism of NtrC(r). In particular, our results reveal that the rearrangements of the native contacts involving the regulatory helix-α4 and the flexible β3-α3 loop upon activation play a crucial role in the activation mechanism.
View Article and Find Full Text PDFResidual structure in the unfolded state of a protein may play a crucial role in folding and stability. In the present study, using an all (heavy)-atom structure based model and replica exchange molecular dynamics simulations, we explored the folding landscape of the third fibronectin type III domain from tenascin-C (TNfn3). Specifically, both the wild type (WT) and a variant with two additional amino acids, Gly-Leu (GL), at the C-terminus (WT(+GL)) were studied.
View Article and Find Full Text PDFConformational flexibility plays a central role in allosteric transition of proteins. In this paper, we extend the analysis of our previous study [S. Tripathi and J.
View Article and Find Full Text PDF