Gastroesophageal reflux disease (GERD) is associated with inflammatory and neoplastic changes in the esophageal epithelium. Despite widespread PPI use, esophageal adenocarcinoma (EAC) incidence continues to rise, implicating non-acidic reflux components such as pepsin in disease progression. We performed transcriptomic profiling to assess pepsin-induced changes and the protective effect of amprenavir in vitro.
View Article and Find Full Text PDFHuman Papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy, with radiotherapy, alone or combined with immune checkpoint inhibitors, often failing to achieve durable disease control. Here, by conducting longitudinal multi-omic analyses of pre- and post-radiation biopsies from patients receiving a pre-operative hypofractionated radiation regimen, we uncover that radiation rapidly depletes a subpopulation of tumor-infiltrating lymphocytes (TIL), characterized by a proliferative, cytotoxic, and tissue-resident gene signature (T). We provide multi-dimensional evidence for tumor antigen-specificity of T clonotypes and show that post-radiation tumors are instead repopulated by regulatory and non-specific clones.
View Article and Find Full Text PDFCardiac glycosides (CGs), historically used to treat heart failure and arrhythmias, bind to the α subunit of the Na/K-ATPase pump and inhibit its activity. Their anticancer and antiviral activities are of interest. The α subunit of the Na/K-ATPase pump has four isoforms (α1-4), each with unique tissue distribution and expression pattern; their contributions to antiviral activities have not been studied.
View Article and Find Full Text PDFPathogenic variants of cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.
View Article and Find Full Text PDFEnhancer of zeste homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and gene repression. EZH2 is overexpressed in many cancers, and studies in mice attributed both prooncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in patients with PDAC is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression.
View Article and Find Full Text PDFAims: Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome.
Methods: We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome.
Diabetic kidney disease (DKD) is the leading cause of chronic renal pathology. Understanding the molecular underpinnings of DKD is critical to designing tailored therapeutic approaches. Here, we focused on sex differences and the contribution of aging toward the progression of DKD.
View Article and Find Full Text PDFBreakthrough symptoms are thought to occur in roughly half of all gastroesophageal reflux disease (GERD) patients despite maximal acid suppression (proton pump inhibitor, PPI) therapy. Topical alginates have recently been shown to enhance mucosal defense against acid-pepsin insult during GERD. We aimed to examine potential alginate protection of transcriptomic changes in a cell culture model of PPI-recalcitrant GERD.
View Article and Find Full Text PDFObjective: The adverse effects of ischemia-reperfusion injury (IRI) remain a principal barrier to a successful outcome after lifesaving orthotopic liver transplantation (OLT). Gene expression during different phases of IRI is dynamic and modified by individual exposures, making it attractive for identifying potential therapeutic targets for improving the number of suitable organs for transplantation and patient outcomes. However, data remain limited on the functional landscape of gene expression during liver graft IRI, spanning procurement to reperfusion and recovery.
View Article and Find Full Text PDFTransl Cancer Res
May 2024
Despite the promise of concurrent radiotherapy (RT) and immunotherapy in head and neck cancer (HNC), multiple randomized trials of this combination have had disappointing results. To evaluate potential immunologic mechanisms of RT resistance, we compared pre-treatment HNCs that developed RT resistance to a matched cohort that achieved curative status. Gene set enrichment analysis demonstrated that a pre-treatment pro-immunogenic tumor microenvironment (TME), including type II interferon [interferon gamma (IFNγ)] and tumor necrosis factor alpha (TNFα) signaling, predicted cure while type I interferon [interferon alpha (IFNα)] enrichment was associated with an immunosuppressive TME found in tumors that went on to recur.
View Article and Find Full Text PDFPurpose: Changes in quantitative magnetic resonance imaging (qMRI) are frequently observed during chemotherapy or radiation therapy (RT). It is hypothesized that qMRI features are reflective of underlying tissue responses. It's unknown what underlying genomic characteristics underly qMRI changes.
View Article and Find Full Text PDFThe Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation.
View Article and Find Full Text PDFFree Radic Biol Med
February 2024
Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance.
View Article and Find Full Text PDFKleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental disorder characterized by intellectual disability, infantile hypotonia, severe expressive language delay, and characteristic facial appearance, with a spectrum of other distinct clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals. This work reports a translational genomic study that applies a multidimensional computational approach for deep variant phenotyping, combining conventional genomic analyses, advanced protein bioinformatics, computational biophysics, biochemistry, and biostatistics-based modeling.
View Article and Find Full Text PDFThis study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research.
View Article and Find Full Text PDFCurrent capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions.
View Article and Find Full Text PDFThis study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretation of these variants are yet to be made, limiting diagnoses and future research.
View Article and Find Full Text PDFCurrent capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions.
View Article and Find Full Text PDFPancreatic cancer is characterized by abundant desmoplasia, a dense stroma composed of extra-cellular and cellular components, with cancer associated fibroblasts (CAFs) being the major cellular component. However, the tissue(s) of origin for CAFs remains controversial. Here we determine the tissue origin of pancreatic CAFs through comprehensive lineage tracing studies in mice.
View Article and Find Full Text PDFReactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival remains unclear.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2022
The histone demethylase KDM6A has recently elicited significant attention because its mutations are associated with a rare congenital disorder (Kabuki syndrome) and various types of human cancers. However, distinguishing KDM6A mutations that are deleterious to the enzyme and their underlying mechanisms of dysfunction remain to be fully understood. Here, we report the results from a multi-tiered approach evaluating the impact of 197 KDM6A somatic mutations using information derived from combining conventional genomics data with computational biophysics.
View Article and Find Full Text PDF