Publications by authors named "Sunyo Jung"

Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with pv. (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower HO production, and up to 64% reduction in membrane damage.

View Article and Find Full Text PDF

Salt stress disrupts cellular ion homeostasis and adversely impacts plant growth and productivity. We examined the regulatory mechanisms of porphyrin biosynthesis, photoprotection, and antioxidant properties in salt-stressed rice seedlings. In response to 150 mM NaCl, the rice seedlings exhibited dehydration, reduced relative water content, and increased levels of conductivity, malondialdehyde, and HO.

View Article and Find Full Text PDF

We examined the control of chlorophyll biosynthesis and protective mechanisms during leaf senescence induced by methyl jasmonate (MeJA). After MeJA treatment, rice plants displayed evidence of great oxidative stress regarding senescence symptoms, disruption of membrane integrity, HO production, and decreased chlorophyll content and photosynthetic efficiency. After 6 h of MeJA treatment, plants greatly decreased not only their levels of chlorophyll precursors, including protoporphyrin IX (Proto IX), Mg-Proto IX, Mg-Proto IX methylester, and protochlorophyllide, but also the expression levels of the chlorophyll biosynthetic genes CHLD, CHLH, CHLI, and PORB, with the greatest decreases at 78 h.

View Article and Find Full Text PDF

The most common symptom of iron (Fe) deficiency in plants is leaf chlorosis caused by impairment of chlorophyll biosynthesis. Magnesium (Mg)-chelatase H subunit (CHLH) is a key component in both chlorophyll biosynthesis and plastid signaling, but its role in Fe deficiency is poorly understood. Heterologous expression of the Mg-chelatase H subunit gene () increased Mg-chelatase activity by up to 6-fold and abundance of its product, Mg-protoporphyrin IX (Mg-Proto IX), by 60-75% in transgenic rice () seedlings compared to wild-type (WT) controls.

View Article and Find Full Text PDF

We examined the effect of () expression on the regulation of porphyrin biosynthesis and resistance to norflurazon (NF)-induced photobleaching in transgenic rice. In response to NF, transgenic lines F4 and F7 showed lesser declines in chlorophyll, carotenoid, / , ϕ, and light-harvesting chlorophyll (Lhc) /-binding proteins as compared to wild-type (WT) plants, resulting in the alleviation of NF-induced photobleaching. During photobleaching, levels of heme, protoporphyrin IX (Proto IX), Mg-Proto IX (monomethylester), and protochlorophyllide decreased in WT and transgenic plants, with lesser decreases in transgenic plants.

View Article and Find Full Text PDF

We examined how tobacco plants coordinate chloroplast components and defense responses during Pseudomonas syringae pv. tomato (Pst) infection. Tobacco leaves infiltrated with Pst induced weak necrosis at 24 h post-infiltration (hpi) and severe necrosis at 48 hpi.

View Article and Find Full Text PDF

We examined the molecular regulation of porphyrin biosynthesis and protective responses in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum Fe-chelatase (BjFeCh) after treatment with acifluorfen (AF). During the photodynamic stress imposed by AF, transcript levels of BjFeCh in transgenic plants increased greatly; moreover, transcript levels of OsFeCh2 remained almost constant, whereas in wild type (WT) plants they were considerably down-regulated. In the heme branch, transgenic plants exhibited greater levels of OsFC and HO transcripts than WT plants in the untreated stems as well as in the AF-treated leaves and stems.

View Article and Find Full Text PDF

We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of HO in response to OF, but not NF, indicates the important role of HO in activation of photooxidative stress signaling in OF plants.

View Article and Find Full Text PDF

Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide.

View Article and Find Full Text PDF

We examined the effects of light quality on growth characteristics and porphyrin biosynthesis of rice seedlings grown under different wavelengths from light emitting diodes (LEDs). After 10 days of exposure to various wavelengths of LEDs, leaf area and shoot biomass were greater in seedlings grown under white and blue LEDs than those of green and red LEDs. Both green and red LED treatments drastically decreased levels of protoporphyrin IX (Proto IX) and Mg-porphyrins compared to those of white LED, while levels of Mg-Proto IX monomethyl ester and protochlorophyllide under blue LED were decreased by 21% and 49%, respectively.

View Article and Find Full Text PDF

In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F/F.

View Article and Find Full Text PDF

We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants.

View Article and Find Full Text PDF

Despite the fact that a variety of nuclear-encoded RNA-binding proteins (RBPs) are targeted to the chloroplast and play essential roles during post-transcriptional RNA metabolism in the chloroplast, the physiological roles of the majority of chloroplast-targeted RBPs remain elusive. Here, we investigated the functional role of a nuclear-encoded S1 domain-containing RBP, designated SDP, in the growth and development of Arabidopsis thaliana. Confocal analysis of the SDP-green fluorescent protein revealed that SDP was localized to the chloroplast.

View Article and Find Full Text PDF

This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state.

View Article and Find Full Text PDF

This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment.

View Article and Find Full Text PDF

A controlled flow of porphyrin metabolites is critical for organisms, but little is known about the control of porphyrin biosynthesis under environmental stress. We monitored transgenic rice (Oryza sativa) plants expressing Myxococcus xanthus protoporphyrinogen oxidase (PPO) for their response to drought stress. Transgenic plants showed significantly improved drought tolerance, as indicated by a higher shoot water potential, less oxidative damage, and a more favorable redox balance compared with wild-type plants.

View Article and Find Full Text PDF

We generated transgenic rice plants (Oryza sativa cv. Dongjin) over-expressing human protoporphyrinogen IX oxidase (PPO) with the aim to increase mitochondrial PPO activity and confer herbicide resistance (Lee et al., Pestic Biochem Physiol 80:65-74, 2004).

View Article and Find Full Text PDF

We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected.

View Article and Find Full Text PDF

A Cyperus difformis L accession from Chonnam province, Korea was tested for resistance to the sulfonylurea herbicide, imazosulfuron. The accession was confirmed to be resistant (R) and was cross-resistant to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, the pyrimidinyl thiobenzoate herbicide, bispyribac-sodium, and the imidazolinone herbicide imazapyr, but not to imazaquin. Multiple resistance was tested using twelve herbicides with target sites other than acetolactate synthase (ALS).

View Article and Find Full Text PDF

Protoporphyrinogen oxidase (Protox) is the last shared enzyme of the porphyrin pathway. As a continuation of our previous work in which the transgenic rice plants expressing the Bacillus subtilis Protox in the cytoplasm or the plastid showed resistance to diphenyl ether herbicide, this study was undertaken to identify the effects of tertapyrrole biosynthesis in these transgenic rice plants. The transgenic plants either targeted into plastids or expressed in cytoplasm showed higher Protox activity than wild-type plants did.

View Article and Find Full Text PDF