Philos Trans R Soc Lond B Biol Sci
May 2025
The global climate crisis will continue to increase the frequency and duration of drought episodes in agricultural production areas worldwide. Hot and dry conditions create greater water-deficit stresses on crops, lowering their productivity. While multiple engineering strategies have been developed to improve the efficiency of photosynthesis, greater efforts are needed to improve the drought attenuation and water-use efficiency of crops.
View Article and Find Full Text PDFDrought is a major environmental stress factor that negatively affects rice growth and yield. From a forward genetic perspective, we selected a drought-insensitive TILLING line (ditl4) from a gamma-ray-induced core mutant population (M). Under drought conditions, ditl4 exhibited greater fresh weight, survival rate, chlorophyll, proline, and soluble sugar contents, and lower HO and MDA levels than wild-type (WT).
View Article and Find Full Text PDFKiwiberry () is a perennial fruit tree belonging to the family Actinidiaceae. Kiwiberries are known to have an extremely high concentration of sugars, phenolics, flavonoids, and vitamin C, and possess delicious taste and health-promoting properties. Numerous studies have focused on kiwiberry fruits, demonstrating that they possess a higher phytochemical content and greater antioxidant activities than other berry fruits.
View Article and Find Full Text PDFVascular wall aging has been strongly associated with cardiovascular diseases. Thus, this study aimed to investigate the efficacy of USCP-GVH-014, a mixed extract of Salvia miltiorrhiza Bunge and Paeonia lactiflora Pall., in inhibiting vascular wall aging through in vitro and in vivo experiments.
View Article and Find Full Text PDFSoil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3-ubiquitin ligase regulates salt tolerance.
View Article and Find Full Text PDFvar. italica (broccoli), a member of the cabbage family, is abundant with many nutrients, including vitamins, potassium, fiber, minerals, and phytochemicals. Consequently, it has been used as a functional food additive to reduce oxidative stress and inflammatory responses.
View Article and Find Full Text PDFTissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe.
View Article and Find Full Text PDFA 34-year-old man developed severe hypoxemia and hypercapnia due to acute respiratory distress during ventilator care after surgery with acute intracranial hemorrhage. Severe hypoxemia had not been corrected even with maximum extracorporeal membrane oxygenation (ECMO) flow and full ventilator settings. We applied a novel technique for the serial connection of two veno-venous ECMO circuits for optimal oxygen delivery and CO2 removal and could wean VV ECMO.
View Article and Find Full Text PDFSalinity negatively affects plant growth, productivity, and metabolism. Therefore, plants have evolved diverse strategies to survive in saline environments. To identify such strategies involving the ubiquitin/26S proteasome system, we characterized molecular functions of a rice C4HC3 really interesting new gene (RING)-type E3-ubiquitin ligase gene.
View Article and Find Full Text PDFWe identified a RING-type E3 ligase (TaBAH1) protein in winter wheat that targets TaSAHH1 for degradation and might be involved in primordia development by regulating targeted protein degradation. Grain yield per spike in wheat (Triticum aestivum), is mainly determined prior to flowering during mature primordia development; however, the genes involved in primordia development have yet to be characterized. In this study, we demonstrated that, after vernalization for 50 days at 4 °C, there was a rapid acceleration in primordia development to the mature stages in the winter wheat cultivars Keumgang and Yeongkwang compared with the Chinese Spring cultivar.
View Article and Find Full Text PDFMolecular function ofRING E3 ligase SbHCI1is involved in ABA-mediated basal heat stress tolerancein sorghum. Global warming generally reduces plant survival, owing to the negative effects of high temperatures on plant development. However, little is known about the role of Really Interesting New Gene (RING) E3 ligase in the heat stress responses of plants.
View Article and Find Full Text PDFGlobal demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C or C photosynthesis.
View Article and Find Full Text PDFTissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1 ) from wine grape involved in the cell expansion phase of berry development.
View Article and Find Full Text PDFPlants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins.
View Article and Find Full Text PDFSalinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na transporter (OsHKT2;1).
View Article and Find Full Text PDFCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO pump with nocturnal CO uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C (or C) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction.
View Article and Find Full Text PDFOsHIRP1 is an E3 ligase that acts as a positive regulator in the plant response to heat stress, thus providing important information relating to adaptation and regulation under heat stress in plant. Extreme temperature adversely affects plant growth, development, and productivity. Here, we report the molecular functions of Oryza sativa heat-induced RING finger protein 1 (OsHIRP1), which might play an important role in the response to heat.
View Article and Find Full Text PDFWhile the accumulation of reactive oxygen species (ROS) through spontaneous generation or as the by-products of aerobic metabolism can be toxic to plants, recent findings demonstrate that ROS act as signaling molecules that play a critical role in adapting to various stress conditions. Tight regulation of ROS homeostasis is required to adapt to stress and survive, yet in vivo spatiotemporal information of ROS dynamics are still largely undefined. In order to understand the dynamics of ROS changes and their biological function in adapting to stresses, two quantitative ROS transcription-based bioreporters were developed.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2018
Fluorescent protein-based biosensors are providing us with an unprecedented, quantitative view of the dynamic nature of the cellular networks that lie at the heart of plant biology. Such bioreporters can visualize the spatial and temporal kinetics of cellular regulators such as Ca and H, plant hormones and even allow membrane transport activities to be monitored in real time in living plant cells. The fast pace of their development is making these tools increasingly sensitive and easy to use and the rapidly expanding biosensor toolkit offers great potential for new insights into a wide range of plant regulatory processes.
View Article and Find Full Text PDFStrategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1 ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield.
View Article and Find Full Text PDFNat Plants
November 2016
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C and C photosynthesis) day/night pattern of stomatal closure/opening to shift CO uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C model plant Arabidopsis.
View Article and Find Full Text PDFUbiquitination-mediated protein degradation via Really Interesting New Gene (RING) E3 ligase plays an important role in plant responses to abiotic stress conditions. Many plant studies have found that RING proteins regulate the perception of various abiotic stresses and signal transduction. In this study, Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1) gene was selected randomly from 44 Oryza sativa RING Finger Proteins (OsRFPs) genes highly expressed in rice roots exposed to salinity stress.
View Article and Find Full Text PDFAlthough a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions.
View Article and Find Full Text PDFCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands.
View Article and Find Full Text PDFPlant Mol Biol
July 2014
The metalloid arsenic (As) and the heavy metal cadmium (Cd) are ubiquitously found at low concentrations in the earth. High concentrations of these elements in the soil and crops are severely dangerous to human health. We attempted to retrieve the RING E3 ubiquitin ligase gene for regulating As and Cd uptakes via the ubiquitin 26S proteasome system.
View Article and Find Full Text PDF