Publications by authors named "Sumit Kumar Pandey"

The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their early stages. Herein, we demonstrate an opto-plasmonic hybrid structure for sensitive detection of the prostate cancer biomarker sarcosine using silica nanospheres coated silver nano-islands as a facile and efficient SERS active substrate.

View Article and Find Full Text PDF

To address the global challenge of water pollution, membrane-based technologies are being used as a dignified separation technology. However, designing low-cost, reusable, freestanding and flexible membranes for wastewater treatment with tunable pore size, good mechanical strength, and high separation efficiency is still a major challenge. Herein, we report the development of a scalable, reusable, freestanding, flexible and functionalized multiwalled carbon nanotube (FMWCNT) membrane filter with tunable pore size for wastewater treatment, which has attractive attributes such as high separation efficiency (>99% for organic dyes and ∼80% for salts), permeance (∼225 L h m bar), tensile strength (∼6 MPa), and reusability of both the membrane as well as contaminants separately.

View Article and Find Full Text PDF

Herein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV-visible spectroscopy.

View Article and Find Full Text PDF

Multiwalled carbon nanotubes molybdenum disulfide 3D nanocomposite (MWCNT-MoS NC) was successfully synthesized via eco-friendly hydrothermal method. The microstructural characterization of synthesized nanocomposite was carried out using different spectroscopic and microscopic techniques. Nanocomposite was activated using glutaraldehyde chemistry and used as a platform to immobilize Lens culinaris β-galactosidase (Lsbgal) which resulted in 93% of immobilization efficiency.

View Article and Find Full Text PDF

Motivation behind the present work is to fabricate a cost effective and scalable biosensing platform for an easy and reliable detection of cancer biomarker Carcinoembryonic antigen (CEA). Here, we report the sensitive and selective detection of CEA using graphene based bio-sensing platform. Large sized (~ 2.

View Article and Find Full Text PDF