Chickpea, a widely cultivated legume, actively fix atmospheric nitrogen in root nodules through a symbiotic relationship with rhizobia bacteria. A recombinant inbred line (RIL) population, progressing from F to F generations, was developed in a short-period of 18 months using the Rapid Generation Advancement (RGA) protocol. The F RILs were evaluated during the 2020-21 and 2021-22 crop seasons under typical field conditions to quantify the effects of nodulation on seed yield (SY) and its associated traits.
View Article and Find Full Text PDFNat Food
February 2025
Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality.
View Article and Find Full Text PDFAs global climate change intensifies, the occurrence and severity of various abiotic stresses will significantly threaten plant health and productivity. Drought stress (DS) is a formidable obstacle, disrupting normal plant functions through specific morphological, physiological, biochemical, and molecular mechanisms. Understanding how plants navigate DS is paramount to mitigating its adverse effects.
View Article and Find Full Text PDFThis study aimed to identify and characterize actinobacteria and rhizobia with plant growth-promoting (PGP) traits from chickpea plants. Out of 275 isolated bacteria, 25 actinobacteria and 5 chickpea rhizobia showed 1-aminocyclopropane-1-carboxylate deaminase (ACCd) activity. Selected chickpea rhizobia were tested for their nodulating capacity under sterile and non-sterile soil conditions.
View Article and Find Full Text PDFSci Rep
July 2024
The draft genome sequence of an agriculturally important actinobacterial species Amycolatopsis sp. BCA-696 was developed and characterized in this study. Amycolatopsis BCA-696 is known for its biocontrol properties against charcoal rot and also for plant growth-promotion (PGP) in several crop species.
View Article and Find Full Text PDFFourteen strains reported earlier as plant growth promoters (PGP) in chickpea were characterized for production of ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and solubilization of silica and zinc. The results showed that nine (CAI-17, CAI-78, KAI-26, CAI-21, CAI-26, MMA-32, CAI-140, CAI-155 and KAI-180) and six (CAI-17, CAI-21, CAI-26, CAI-13, CAI-93 and KAI-180) strains were found to produce ammonia and ACC deaminase, respectively, while one (KAI-180) and eight (CAI-17, CAI-21, CAI-26, MMA-32, CAI-13, CAI-85, CAI-93 and KAI-180) strains solubilized silica and zinc, respectively. The selected 14 strains were categorized into three consortia groups, consortium-1 (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), consortium-2 (CAI-21, CAI-26 and MMA-32) and consortium-3 (CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180), based on their compatibility, and evaluated for their PGP traits in chickpea.
View Article and Find Full Text PDFAs plastic mulching is widely used for maize production on Loess Plateau, study of the fate of fertilizer nitrogen (N) in rain-fed croplands is of great significance. Field experiments were conducted during 2015-2016 at a typical dry-land farm on the Loess Plateau, China. The stable isotope tracer technique was applied to analyze the effects of plastic mulching on the maize crop yield, N content in the grain, and mechanism of N uptake and utilization in maize plants with plastic mulch (PM) and without plastic mulch (CK) on the Loess Plateau.
View Article and Find Full Text PDFSoil extracellular enzymes are pivotal for microbial nutrient cycling in the ecosystem. In order to study the effects of different nitrogen application rates under plastic film mulching on soil extracellular enzyme activities and stoichiometry, five nitrogen application levels (i.e.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2022
Int J Environ Res Public Health
December 2021
The impact of chemical to organic fertilizer substitution on soil labile organic and stabilized N pools under intensive farming systems is unclear. Therefore, we analyzed the distribution of soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), dissolved organic N (DON), and mineral N (NO and NH) levels down to 100 cm profile under wheat-maize rotation system in northern China. The experiment was established with four 270 kg ha N equivalent fertilizer treatments: Organic manure (OM); Organic manure with nitrogen fertilizer (OM + NF); Nitrogen fertilizer (NF); and Control (CK).
View Article and Find Full Text PDFSix rhizobia-like-bacterial strains in total, secluded from the root and stem nodules of various leguminous plants were characterized for growth promoting ability on ICCV 2 variety of chickpea. Bacterial strains showed production of IAA, NH, siderophore, HCN, ACC deaminase, hydrolytic enzyme production such as chitinase, amylase, protease, lipase, β-1, 3-glucanase and solubilization of nutrients such as phosphate, zinc and potassium. However the performance of PGP traits characterized varied among the six bacterial strains.
View Article and Find Full Text PDFThree strains of Streptomyces griseus (CAI-24, CAI-121 and CAI-127) and one strain each of Streptomyces africanus (KAI-32) and Streptomyces coelicolor (KAI-90) were reported by us as biocontrol agents against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and as plant growth-promoters (PGP) in chickpea.
View Article and Find Full Text PDFThe findings of this study suggest that the selected five strains of Streptomyces spp. could be used for biological control of charcoal rot disease in sorghum. Two strains each of Streptomyces albus (CAI-17 and KAI-27) and Streptomyces griseus (KAI-26 and MMA-32) and one strain of Streptomyces cavourensis (SAI-13) previously reported to have plant growth-promotion activity in chickpea, rice and sorghum were evaluated for their antagonistic potential against Macrophomina phaseolina, which causes charcoal rot in sorghum.
View Article and Find Full Text PDFstrain CAI-21 has been previously reported to have plant growth-promotion abilities in chickpea, pigeonpea, rice, and sorghum. The strain CAI-21 and its secondary metabolite were evaluated for their biocontrol potential against charcoal rot disease in sorghum caused by . Results exhibited that CAI-21 significantly inhibited the growth of the pathogen, , in dual-culture (15 mm; zone of inhibition), metabolite production (74% inhibition), and blotter paper (90% inhibition) assays.
View Article and Find Full Text PDFFor all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF).
View Article and Find Full Text PDFThe genome sequences of 16 Streptomyces strains, showing potential for plant growth-promotion (PGP) activities in rice, sorghum, chickpea and pigeonpea, isolated from herbal vermicompost, have been decoded. The genome assemblies of the 16 Streptomyces strains ranged from 6.8 Mb to 8.
View Article and Find Full Text PDFNitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia.
View Article and Find Full Text PDFMicrob Pathog
September 2018
A total of 219 endophytic actinobacteria, isolated from roots, stems and leaves of chickpea, were characterized for antagonistic potential against Botrytis cinerea, causal organism of Botrytis grey mold (BGM) disease, in chickpea. Among them, three most potential endophytes, AUR2, AUR4 and ARR4 were further characterized for their plant growth-promoting (PGP) and nodulating potentials and host-plant resistance against B. cinerea, in chickpea.
View Article and Find Full Text PDFGrain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses".
View Article and Find Full Text PDFSeven strains of bacteria [ SRI-156, SRI-158, SRI-178, SRI-211, SRI-229, SRI-305 and SRI-360; demonstrated previously for control of charcoal rot disease in sorghum and plant growth-promotion (PGP) in rice] were evaluated for their PGP and biofortification traits in chickpea and pigeonpea under field conditions. When treated on seed, the seven selected bacteria significantly enhanced the shoot height and root length of both chickpea and pigeonpea over the un-inoculated control. Under field conditions, in both chickpea and pigeonpea, the plots inoculated with test bacteria enhanced the nodule number, nodule weight, root and shoot weights, pod number, pod weight, leaf weight, leaf area and grain yield over the un-inoculated control plots.
View Article and Find Full Text PDFHelicoverpa armigera, an important pest causes serious damage to grain legumes. The main objective of this study was to isolate and identify the metabolite against H. armigera from a previously characterised Streptomyces sp.
View Article and Find Full Text PDFThe present study was evaluated to test the potential of plant growth-promoting actinobacteria in increasing seed mineral density of chickpea under field conditions. Among the 19 isolates of actinobacteria tested, significant (p < 0.05) increase of minerals over the uninoculated control treatments was noticed on all the isolates for Fe (10-38 %), 17 for Zn (13-30 %), 16 for Ca (14-26 %), 9 for Cu (11-54 %) and 10 for Mn (18-35 %) and Mg (14-21 %).
View Article and Find Full Text PDFThe physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012-13 and 2013-14 post-rainy seasons.
View Article and Find Full Text PDFModern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture.
View Article and Find Full Text PDF