Celest Mech Dyn Astron
April 2025
We present a new method for computing the state transition matrix of a nonlinear dynamical system. The proposed method does not require the implementation of complex partial derivatives or auto-differentiation of the dynamics, while removing the arbitrary choice of a perturbation step for traditional finite difference methods. We tested the new state transition matrices using three different applications: a simple two-body problem, a Mars atmospheric entry flight mechanics problem, and two future close encounters of the asteroid (101955) Bennu with the Earth.
View Article and Find Full Text PDFKinetic deflection is a planetary defense technique delivering spacecraft momentum to a small body to deviate its course from Earth. The deflection efficiency depends on the impactor and target. Among them, the contribution of global curvature was poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing.
View Article and Find Full Text PDFAlthough no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation.
View Article and Find Full Text PDFThe Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos.
View Article and Find Full Text PDFThe solid, central part of a comet--its nucleus--is subject to destructive processes, which cause nuclei to split at a rate of about 0.01 per year per comet. These destructive events are due to a range of possible thermophysical effects; however, the geophysical expressions of these effects are unknown.
View Article and Find Full Text PDFScience
September 2009
Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body.
View Article and Find Full Text PDFRadar ranging from Arecibo, Puerto Rico, to the 0.5-kilometer near-Earth asteroid 6489 Golevka unambiguously reveals a small nongravitational acceleration caused by the anisotropic thermal emission of absorbed sunlight. The magnitude of this perturbation, known as the Yarkovsky effect, is a function of the asteroid's mass and surface thermal characteristics.
View Article and Find Full Text PDF