Publications by authors named "Stephanus Venter"

The nitrogen-fixing and nodule-forming symbionts of legumes, which belong to the class Betaproteobacteria, are informally known as beta-rhizobia. Thus far, members of this group have only been found in the genera Paraburkholderia, Trinickia and Cupriavidus. In this study, we investigate the poorly characterized evolutionary history of this trait in the predominant beta-rhizobial genus, Paraburkholderia.

View Article and Find Full Text PDF

BISMiS Live, launched on March 20, 2021, emerged as a timely response to the disruption caused by the CoViD-19 pandemic, offering a global virtual platform for discourse in microbial systematics. Spearheaded by the Bergey's International Society for Microbial Systematics (BISMiS), this monthly webinar series hosted renowned experts and engaged thousands of participants across 84 countries. The initiative emphasized inclusivity, scientific depth, and digital accessibility, with sessions archived on YouTube (@BISMiS_) for broader impact.

View Article and Find Full Text PDF

Haloquadratum walsbyi is generally the dominant species in hypersaline ecosystems at salt saturation conditions. Here, we followed the dynamics of its genomovars and associated viruses during recurrent evaporation-dilution disturbances of varying intensities at the mesocosm scale over 813 days. The diversity observed within a single mesocosm was also compared with that in a global-scale inventory of hypersaline environments of thalassohaline origin.

View Article and Find Full Text PDF

Escherichia coli is widely used as an indicator of faecal contamination, as it is assumed that faeces from warm-blooded animals is the primary source of E. coli in the environment. However, various studies have shown that E.

View Article and Find Full Text PDF

Legumes Lessertia diffusa and Calobota sericea, indigenous to South Africa, are commonly used as fodder crops with potential for sustainable livestock pasture production. Rhizobia were isolated from their root nodules grown in their respective soils from the Succulent Karoo biome (SKB) in South Africa, identified and characterized using a polyphasic approach. Sequence analysis of the 16S rRNA gene confirmed all isolates as Mesorhizobium members, which were categorized into two distinct lineages using five housekeeping protein-coding genes.

View Article and Find Full Text PDF

Recent genomic analyses have revealed that microbial communities are predominantly composed of persistent, sequence-discrete species and intraspecies units (genomovars), but the mechanisms that create and maintain these units remain unclear. By analyzing closely-related isolate genomes from the same or related samples and identifying recent recombination events using a novel bioinformatics methodology, we show that high ecological cohesiveness coupled to frequent-enough and unbiased (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how extreme halophiles in salt-rich environments react to repeated dilution of salinity, showing that their dominance shifts based on the level of stress.
  • Under moderate stress (20% salinity), dominant species like Haloquadratum walsbyi and Salinibacter ruber thrived, while under stronger stress (13% salinity), they were replaced by more adaptable species.
  • These findings suggest that genus-level diversity is crucial for ecological resilience, with species replacements occurring alongside viral co-evolution, highlighting the dynamic adaptability of brine microbial communities.
View Article and Find Full Text PDF

Stable taxon names for Bacteria and Archaea are essential for capturing and documenting prokaryotic diversity. They are also crucial for scientific communication, effective accumulation of biological data related to the taxon names and for developing a comprehensive understanding of prokaryotic evolution. However, after more than a hundred years, taxonomists have succeeded in valid publication of only around 30 000 species names, based mostly on pure cultures under the International Code of Nomenclature of Prokaryotes (ICNP), out of the millions estimated to reside in the biosphere.

View Article and Find Full Text PDF

Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences.

View Article and Find Full Text PDF

Amendments were proposed to the International Code of Nomenclature of Prokaryotes (ICNP) in January [Arahal et al. (2024) Int. J Syst.

View Article and Find Full Text PDF

South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations.

View Article and Find Full Text PDF

Codes of nomenclature that provide well-regulated and stable frameworks for the naming of taxa are a fundamental underpinning of biological research. These Codes themselves require systems that govern their administration, interpretation and emendment. Here we review the provisions that have been made for the governance of the recently introduced Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), which provides a nomenclatural framework for the valid publication of names of Archaea and Bacteria using isolate genome, metagenome-assembled genome or single-amplified genome sequences as type material.

View Article and Find Full Text PDF

What a strain is and how many strains make up a natural bacterial population remain elusive concepts despite their apparent importance for assessing the role of intra-population diversity in disease emergence or response to environmental perturbations. To advance these concepts, we sequenced 138 randomly selected Salinibacter ruber isolates from two solar salterns and assessed these genomes against companion short-read metagenomes from the same samples. The distribution of genome-aggregate average nucleotide identity (ANI) values among these isolates revealed a bimodal distribution, with four-fold lower occurrence of values between 99.

View Article and Find Full Text PDF

Stink bug species ( superfamily) have developed an interdependence with obligate bacterial gut symbionts in specialized midgut crypts (M4 sub-region). Species of the family (predominantly ) are vertically transferred to their offspring and provide nutrients that cannot be obtained from plant sap food sources. However, the bacteria in the other gut compartments of stink bugs have rarely been investigated.

View Article and Find Full Text PDF

Bacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings.

View Article and Find Full Text PDF

As the name of the genus ("of all sorts and sources") suggests, this genus includes bacteria with a wide range of provenances, including plants, animals, soils, components of the water cycle, and humans. Some members of the genus are pathogenic to plants, and some are suspected to be opportunistic human pathogens; while others are used as microbial pesticides or show promise in biotechnological applications. During its taxonomic history, the genus and its species have seen many revisions.

View Article and Find Full Text PDF

comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate.

View Article and Find Full Text PDF

A genealogical concordance approach was used to delineate strains isolated from Acacia dealbata and Acacia mearnsii root nodules in South Africa. These isolates form part of Bradyrhizobium based on 16S rRNA sequence similarity. Phylogenetic analysis of six housekeeping genes (atpD, dnaK, glnII, gyrB, recA and rpoB) confirmed that these isolates represent a novel species, while pairwise average nucleotide identity (ANIb) calculations with the closest type strains (B.

View Article and Find Full Text PDF

Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp.

View Article and Find Full Text PDF

The cultivation of chickpea (Cicer arietinum L.) in South Africa is dependent on the application of suitable Mesorhizobium inoculants. Therefore, we evaluated the symbiotic effectiveness of several Mesorhizobium strains with different chickpea genotypes under controlled conditions.

View Article and Find Full Text PDF

Restrictions placed on the distribution of biological material by the legislation of countries such as India, South Africa, or Brazil exclude strains that could serve as type material for the validation or valid publication of prokaryotic species names. This problem goes beyond prokaryotic taxonomy and is also relevant for other areas of biological research.

View Article and Find Full Text PDF

Most prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences.

View Article and Find Full Text PDF

Over the last fifteen years, genomics has become fully integrated into prokaryotic systematics. The genomes of most type strains have been sequenced, genome sequence similarity is widely used for delineation of species, and phylogenomic methods are commonly used for classification of higher taxonomic ranks. Additionally, environmental genomics has revealed a vast diversity of as-yet-uncultivated taxa.

View Article and Find Full Text PDF