Publications by authors named "Stephane Chaignepain"

A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its - and -helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners.

View Article and Find Full Text PDF

The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic -quinones was exploited using NaIO to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes.

View Article and Find Full Text PDF

The antiapoptotic protein Bcl-xL is a major regulator of cell death and survival, but many aspects of its functions remain elusive. It is mostly localized in the mitochondrial outer membrane (MOM) owing to its C-terminal hydrophobic α-helix. In order to gain further information about its membrane organization, we set up a model system combining cell-free protein synthesis and nanodisc insertion.

View Article and Find Full Text PDF

This study aimed at searching for the enzymes that are responsible for the higher hydroxylation of flavonols serving as UV-honey guides for pollinating insects on the petals of Asteraceae flowers. To achieve this aim, an affinity-based chemical proteomic approach was developed by relying on the use of quercetin-bearing biotinylated probes, which were thus designed and synthesized to selectively and covalently capture relevant flavonoid enzymes. Proteomic and bioinformatic analyses of proteins captured from petal microsomes of two Asteraceae species ( and ) revealed the presence of two flavonol 6-hydroxylases and several additional not fully characterized proteins as candidates for the identification of novel flavonol 8-hydroxylases, as well as relevant flavonol methyl- and glycosyltransferases.

View Article and Find Full Text PDF

The S184 residue of Bax is the target of several protein kinases regulating cell fate, including AKT. It is well-established that, , the substitution of S184 by a non-phosphorylatable residue stimulates both the mitochondrial localization of Bax, cytochrome c release, and apoptosis. However, in experiments, substituted mutants did not exhibit any increase in their binding capacity to isolated mitochondria or liposomes.

View Article and Find Full Text PDF

Little is known about structural alterations of proteins within the polymeric films of paints. For the first time, hydrogen‑deuterium exchange mass spectrometry (HDX-MS) was implemented to explore the conformational alterations of proteins resulting from their interaction with inorganic pigments within the early stages of the paint film formation. Intact protein analysis and bottom-up electrospray-ionisation mass spectrometry strategies combined with progressively increasing deuterium incubation times were used to compare the protein structures of the model protein hen egg-white lysozyme (HEWL) extracted from newly dried non-pigmented films and newly dried films made from a freshly made mixture of HEWL with lead white pigment (2PbCO Pb(OH)).

View Article and Find Full Text PDF

Background: [Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients.

View Article and Find Full Text PDF

Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP).

View Article and Find Full Text PDF

Formation of amyloid-beta (Aβ) oligomer pores in the membrane of neurons has been proposed to explain neurotoxicity in Alzheimer's disease (AD). Here, we present the three-dimensional structure of an Aβ oligomer formed in a membrane mimicking environment, namely an Aβ(1-42) tetramer, which comprises a six stranded β-sheet core. The two faces of the β-sheet core are hydrophobic and surrounded by the membrane-mimicking environment while the edges are hydrophilic and solvent-exposed.

View Article and Find Full Text PDF

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results.

View Article and Find Full Text PDF

The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)•viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA).

View Article and Find Full Text PDF
Article Synopsis
  • Death receptors (DR4 and DR5) trigger cancer cell death (apoptosis) when they bind to the TRAIL ligand, initiating a signaling cascade that leads to cell death.
  • Researchers have previously published structures of DR5 in complex with TRAIL or antibodies, but no structure of the isolated protein existed.
  • This study introduces the first resonance assignment of DR5's extracellular domain in solution using high-field 3D NMR spectroscopy, providing insights into its conformational properties and secondary structure.
View Article and Find Full Text PDF

Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known.

View Article and Find Full Text PDF

Background: Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process.

View Article and Find Full Text PDF

The quantification of monoclonal antibodies (mAbs) such as bevacizumab, a recombinant humanized immunoglobulin G1 (hIgG1), in biological fluids, is an essential prerequisite to any pharmacokinetic preclinical and clinical study. To date, reference techniques used to quantify mAbs rely on enzyme-linked immunosorbent assay (ELISA) lacking specificity. Furthermore, the commercially available ELISA kit to quantify bevacizumab in human plasma only assesses the free fraction of the drug.

View Article and Find Full Text PDF

Background: Alzheimer's disease is the most common neurodegenerative disease associated with aggregation of Aβ peptides. Aβ toxicity is mostly related to the capacity of intermediate oligomers to disrupt membrane integrity. We previously expressed Aβ in a eukaryotic cellular system and selected synthetic variants on their sole toxicity.

View Article and Find Full Text PDF

Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP.

View Article and Find Full Text PDF
Article Synopsis
  • hRAD51 protein plays a crucial role in restricting HIV-1 integration, both in lab experiments (in vitro) and in living organisms (in vivo).
  • Activating hRAD51 enhances its ability to inhibit HIV-1 integration, while inhibiting it leads to increased viral integration.
  • Cells with higher levels of hRAD51 before infection are more resistant to HIV-1, but activating hRAD51 during integration makes them more permissive, showing its complex role in HIV-1 replication.
View Article and Find Full Text PDF

Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long-sought hormone that regulates iron homeostasis in mammals. Recombinant human Hepcidin-25 (Hepc25) was expressed in Pichia pastoris using a modified version of the pPICZαA vector.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues.

View Article and Find Full Text PDF

Flavonoid-bearing probes have been designed and synthesized to explore their ability to selectively capture target proteins or biosynthetic enzymes under oxidative activation. A proof-of-concept study using biotinylated (epi)catechin-bearing affinity-based probes herein demonstrates the ability of these probes to capture the LDOX flavonoid enzyme using sodium periodate as the oxidant.

View Article and Find Full Text PDF

Synaptotagmins are two C2 domain-containing transmembrane proteins. The function of calcium-sensitive members in the regulation of post-Golgi traffic has been well established whereas little is known about the calcium-insensitive isoforms constituting half of the protein family. Novel binding partners of synaptotagmin 11 were identified in β-cells.

View Article and Find Full Text PDF
Article Synopsis
  • Polynucleotidyl transferases are enzymes important for DNA movement in both prokaryotes and eukaryotes, with some like retroviral integrases being key players in disease mechanisms and potential drug targets.
  • Researchers studied the impact of natural stilbenoids, particularly those from resveratrol, on HIV-1 integrase and MOS-1 transposase, discovering new dimers and known compounds with varying levels of inhibition on these enzymes.
  • Some stilbenoids showed promise not only in inhibiting integrase but also in impacting early stages of lentiviral replication, highlighting their potential as therapeutic leads and as tools for exploring the mechanics of DNA mobility.
View Article and Find Full Text PDF
Article Synopsis
  • Cell-penetrating peptides (CPPs) can enter cells without the need for receptors, primarily through endocytosis or directly crossing the membrane.
  • A new method using matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MS) allows for the quantification of CPP uptake into lipid vesicles, distinguishing between uptake and mere binding.
  • Research indicates that the charge density of the membrane influences translocation, and that fluorescent dyes used in traditional methods can affect the properties and toxicity of CPPs, suggesting alternative methods may provide clearer insights into CPP uptake mechanisms.
View Article and Find Full Text PDF

The involvement of subunit 6 (a) in the interface between yeast ATP synthase monomers has been highlighted. Based on the formation of a disulfide bond and using the unique cysteine 23 as target, we show that two subunits 6 are close in the inner mitochondrial membrane and in the solubilized supramolecular forms of the yeast ATP synthase. In a null mutant devoid of supernumerary subunits e and g that are involved in the stabilization of ATP synthase dimers, ATP synthase monomers are close enough in the inner mitochondrial membrane to make a disulfide bridge between their subunits 6, and this proximity is maintained in detergent extract containing this enzyme.

View Article and Find Full Text PDF