Publications by authors named "Eloise Thierry"

Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway.

View Article and Find Full Text PDF

Background: Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process.

View Article and Find Full Text PDF

FDA-approved integrase strand transfer inhibitors (raltegravir, elvitegravir and dolutegravir) efficiently inhibit HIV-1 replication. Here, we present fluorescence properties of these inhibitors. Dolutegravir displays an excitation mode particularly dependent on Mg chelation, allowing to directly probe its Mg-dependent binding to the prototype foamy virus (PFV) integrase.

View Article and Find Full Text PDF

Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms.

View Article and Find Full Text PDF

Integration of HIV-1 linear DNA into host chromatin is required for high levels of viral expression, and constitutes a key therapeutic target. Unintegrated viral DNA (uDNA) can support only limited transcription but may contribute to viral propagation, persistence and/or treatment escape under specific situations. The molecular mechanisms involved in the differential expression of HIV uDNA vs integrated genome (iDNA) remain to be elucidated.

View Article and Find Full Text PDF

Objectives: HIV-1 integration can be efficiently inhibited by strand-transfer inhibitors such as raltegravir, elvitegravir or dolutegravir. Three pathways conferring raltegravir/elvitegravir cross-resistance (involving integrase residues Q148, N155 and Y143) were identified. Dolutegravir, belonging to the second generation of strand-transfer compounds, inhibits the Y143 and N155 pathways, but is less efficient at inhibiting the Q148 pathway.

View Article and Find Full Text PDF
Article Synopsis
  • hRAD51 protein plays a crucial role in restricting HIV-1 integration, both in lab experiments (in vitro) and in living organisms (in vivo).
  • Activating hRAD51 enhances its ability to inhibit HIV-1 integration, while inhibiting it leads to increased viral integration.
  • Cells with higher levels of hRAD51 before infection are more resistant to HIV-1, but activating hRAD51 during integration makes them more permissive, showing its complex role in HIV-1 replication.
View Article and Find Full Text PDF

Background: Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells.

View Article and Find Full Text PDF

HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues.

View Article and Find Full Text PDF

Objectives: Strand transfer inhibitors (raltegravir, elvitegravir and dolutegravir) are now commonly used to inhibit HIV-1 integration. To date, three main pathways conferring raltegravir/elvitegravir resistance, involving residues Y143, Q148 and N155, have been described. However, no pathway has been clearly described for dolutegravir resistance.

View Article and Find Full Text PDF