Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formation of amyloid-beta (Aβ) oligomer pores in the membrane of neurons has been proposed to explain neurotoxicity in Alzheimer's disease (AD). Here, we present the three-dimensional structure of an Aβ oligomer formed in a membrane mimicking environment, namely an Aβ(1-42) tetramer, which comprises a six stranded β-sheet core. The two faces of the β-sheet core are hydrophobic and surrounded by the membrane-mimicking environment while the edges are hydrophilic and solvent-exposed. By increasing the concentration of Aβ(1-42) in the sample, Aβ(1-42) octamers are also formed, made by two Aβ(1-42) tetramers facing each other forming a β-sandwich structure. Notably, Aβ(1-42) tetramers and octamers inserted into lipid bilayers as well-defined pores. To establish oligomer structure-membrane activity relationships, molecular dynamics simulations were carried out. These studies revealed a mechanism of membrane disruption in which water permeation occurred through lipid-stabilized pores mediated by the hydrophilic residues located on the core β-sheets edges of the oligomers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296003PMC
http://dx.doi.org/10.1038/s41467-020-16566-1DOI Listing

Publication Analysis

Top Keywords

aβ1-42 tetramer
8
mechanism membrane
8
aβ oligomer
8
β-sheet core
8
aβ1-42 tetramers
8
aβ1-42
6
tetramer octamer
4
octamer structures
4
structures reveal
4
reveal edge
4

Similar Publications

Interaction studies by NMR on the multivalent interaction between chondroitin sulfate E derivatives and the langerin receptor.

Org Biomol Chem

September 2025

Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, Spain.

In this paper, we present the NMR analysis of multivalent compounds displaying chondroitin sulfate E (CS-E) disaccharide ligands and their interaction with langerin. The disaccharides correspond to the two alternative sequences of CS-E: GlcA-GalNAc and GalNAc-GlcA. Firstly, we studied the conformation of the two corresponding series of glycodendrimers free in solution and in the presence of langerin.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Resonance assignments of asymmetric tetrameric platelet factor 4 (PF4).

Biomol NMR Assign

September 2025

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.

Platelet Factor 4 (PF4), also known as CXCL4, is a CXC chemokine crucial for hemostasis, inflammation, and immune responses. Under physiological conditions PF4 assembles into asymmetric tetramers (31.2 kDa) that are dimers of dimers with highly flexible N-terminal regions.

View Article and Find Full Text PDF

The intestinal immune system is adapted to maintain constant interactions with environmental stimuli without causing inflammation. The recognition of Ags derived from microbes and diet can induce Treg or effector T cell responses through dynamic regulatory mechanisms, significantly impacting host health and disease. Although several examples of Ag-specific T cell responses to microbial or dietary Ags have been reported, our understanding of the full range of gut T cell responses remains highly limited.

View Article and Find Full Text PDF

Cationic Calcium Channels Activated by Cyclic Nucleotides in Plants: A Systematic Review Using the PRISMA Method.

Prog Biophys Mol Biol

September 2025

Grupo de investigación en Química Teórica y Bioinformática, Department of Chemistry, Universidad de Caldas, Cl. 65 # 26-10, Manizales, Colombia.

The primary objective of this review is to analyze primary research published over the past six years concerning cyclic nucleotide-gated calcium channels (CNGC) in plants. The aim is to structure this information to identify and organize existing knowledge regarding their tertiary and quaternary structures, as well as the activation mechanisms of CNGC. Studies on plant CNGC published between January 2018 and May 2025 were included, while research focused on animals, bacteria, or ions other than calcium was excluded.

View Article and Find Full Text PDF