Publications by authors named "Spyros Darmanis"

Both bacterial and viral infections can trigger an overwhelming host response, leading to immunopathology and organ dysfunction. Multiple studies have reported dysregulated myeloid cell states in patients with bacterial sepsis or severe SARS-CoV-2 infection. However, their relevance to viral infections other than COVID-19, the factors driving their induction, and their role in tissue injury remain poorly understood.

View Article and Find Full Text PDF

Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands.

View Article and Find Full Text PDF

This study examined nine prominent commercially available single-cell RNA sequencing (scRNA-seq) kits across four technology groups. Each kit was characterized using peripheral blood mononuclear cells (PBMCs) from a single donor, which enabled consistent assessment of factors such as analytical performance, protocol duration and cost. The Chromium Fixed RNA Profiling kit from 10× Genomics, with its probe-based RNA detection method, demonstrated the best overall performance.

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages are diverse cells that inhabit all body tissues, with specific types residing in organs and additional subtypes recruited during injury.
  • A specific population of recruited macrophages, marked by certain gene expressions, has been linked to fibrosis in various injury and cancer models.
  • Blocking Notch2 increases these macrophages in the lungs, but evidence suggests they actually help reduce fibrosis rather than cause it, highlighting their potential protective role during lung injuries.
View Article and Find Full Text PDF

Multiomic profiling of single cells by sequencing is a powerful technique for investigating cellular diversity. Existing droplet-based microfluidic methods produce many cell-free droplets, underutilizing bead barcodes and reagents. Combinatorial indexing on microplates is more efficient for barcoding but labor-intensive.

View Article and Find Full Text PDF

Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH.

View Article and Find Full Text PDF

Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs).

View Article and Find Full Text PDF

Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp.

View Article and Find Full Text PDF
Article Synopsis
  • The immune phenotype of tumors plays a crucial role in predicting how well they will respond to immunotherapy, with immune-inflamed tumors typically having better responses due to high T cell infiltration.
  • Not all inflamed tumors are effective against therapy, and tumors lacking T cells (immune desert) or pushing T cells to the edges (immune excluded) show even lower response rates.
  • The new technique called skin tumor array by microporation (STAMP) allows researchers to study the development and dynamics of tumor immune phenotypes in real-time, revealing that local factors and T cell recruitment are key to understanding tumor rejection and therapy success.
View Article and Find Full Text PDF

An abundance of research has recently highlighted the susceptibility of cochleovestibular ganglion (CVG) neurons to noise damage and aging in the adult cochlea, resulting in hearing deficits. Furthering our understanding of the transcriptional cascades that contribute to CVG development may provide insight into how these cells can be regenerated to treat inner ear dysfunction. Here we perform a high-depth single-cell RNA sequencing analysis of the E10.

View Article and Find Full Text PDF

The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have learned a lot about how different cells behave by studying them one at a time using special techniques called single-cell RNA sequencing.
  • They are now also able to measure proteins in these cells, which helps understand what types of cells exist in complicated tissues.
  • The article talks about the difficulties in finding proteins in single cells and suggests that combining new technologies could help make these discoveries even better.
View Article and Find Full Text PDF

Pulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs.

View Article and Find Full Text PDF

With the aim of expediting drug target discovery and validation for respiratory diseases, we developed an optimized method for somatic gene disruption in murine lung epithelial cells via AAV6-mediated CRISPR-Cas9 delivery. Efficient gene editing was observed in lung type II alveolar epithelial cells and distal airway cells following assessment of single- or dual-guide AAV vector formats, Cas9 variants, and a sequential dosing strategy with combinatorial guide RNA expression cassettes. In particular, we were able to demonstrate population-wide gene disruption within distinct epithelial cell types for separate targets in Cas9 transgenic animals, with minimal to no associated inflammation.

View Article and Find Full Text PDF

The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality. Although an increasing number of interventions show promise for rejuvenation, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell RNA sequencing (scRNA-seq) combined with RNA velocity and metabolic labeling provides detailed insights into how cells change states and transition over time.
  • The dynamo framework is introduced as a tool that enhances the analysis of scRNA-seq data by inferring RNA velocity, predicting cell fates, and identifying key regulatory mechanisms using advanced mathematical techniques.
  • Dynamically demonstrating its effectiveness, dynamo helps uncover the processes behind platelet cell formation and predicts how changes in gene activity can influence cell fates, marking a significant advancement in understanding cell state transitions.
View Article and Find Full Text PDF

Single cell technologies are rapidly generating large amounts of data that enables us to understand biological systems at single-cell resolution. However, joint analysis of datasets generated by independent labs remains challenging due to a lack of consistent terminology to describe cell types. Here, we present OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology.

View Article and Find Full Text PDF

In humans, epidermal melanocytes are responsible for skin pigmentation, defence against ultraviolet radiation and the deadliest common skin cancer, melanoma. Although there is substantial overlap in melanocyte development pathways between different model organisms, species-dependent differences are frequent and the conservation of these processes in human skin remains unresolved. Here, we used a single-cell enrichment and RNA-sequencing pipeline to study human epidermal melanocytes directly from the skin, capturing transcriptomes across different anatomical sites, developmental age, sexes and multiple skin tones.

View Article and Find Full Text PDF

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection.

View Article and Find Full Text PDF

Aging is associated with complex molecular and cellular processes that are poorly understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq data set to systematically characterize gene expression changes during aging across diverse cell types in the mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and characterized both shared and tissue-cell-specific aging behaviors.

View Article and Find Full Text PDF
Article Synopsis
  • Secondary bacterial infections like ventilator-associated pneumonia (VAP) worsen outcomes for COVID-19 patients, increasing mortality rates.
  • A study of 23 COVID-19 patients, some of whom developed VAP, revealed immune response changes and bacterial infection signs occurring days to weeks before VAP onset.
  • The research indicates that COVID-19 patients who eventually get VAP have weakened immune defenses against bacteria, potentially leading to secondary infections.
View Article and Find Full Text PDF

Thrombopoietin (TPO) and the TPO-receptor (TPO-R, or c-MPL) are essential for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Agents that can modulate TPO-R signaling are highly desirable for both basic research and clinical utility. We developed a series of surrogate protein ligands for TPO-R, in the form of diabodies (DBs), that homodimerize TPO-R on the cell surface in geometries that are dictated by the DB receptor binding epitope, in effect "tuning" downstream signaling responses.

View Article and Find Full Text PDF

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray).

View Article and Find Full Text PDF

Although tremendous effort has been put into cell-type annotation, identification of previously uncharacterized cell types in heterogeneous single-cell RNA-seq data remains a challenge. Here we present MARS, a meta-learning approach for identifying and annotating known as well as new cell types. MARS overcomes the heterogeneity of cell types by transferring latent cell representations across multiple datasets.

View Article and Find Full Text PDF