Sheath blight (ShB) disease, caused by Rhizoctonia solani Kuhn, poses a significant economic threat to rice production world wide. Acknowledging the limited understanding of ShB resistance proteomics in highly resistant germplasm, our study aimed to unravel the proteomic intricacies underlying the interaction between resistant landrace Nizam Shait and R. solani.
View Article and Find Full Text PDFBackground: The quality of groundnut produce is adversely impacted due to aflatoxin contamination by the fungus Aspergillus flavus. Although the transcriptomic control is not fully understood, the interaction between long non-coding RNAs and microRNAs in regulating A. flavus and aflatoxin contamination remains unclear.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
October 2024
Unlabelled: The current climate change has a profound impact on agricultural production. Despite the unanimous efforts of several nations to prevent further increase in global temperatures, developing adaptive strategies by imparting heat tolerance in crop plants is essential to ensure global food security. This study demonstrates the impact of heat stress on the morphological, physiological and biochemical properties of different groundnut genotypes derived from a recombinant inbred line (RIL) population (JL 24 × 55-437).
View Article and Find Full Text PDFGroundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress.
View Article and Find Full Text PDFClimate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production.
View Article and Find Full Text PDFSheath blight disease caused by the necrotrophic, soilborne pathogen Rhizoctonia solani Kuhn, is the global threat to rice production. Lack of reliable stable resistance sources in rice germplasm pool for sheath blight has made resistance breeding a very difficult task. In the current study, 101 rice landraces were screened against R.
View Article and Find Full Text PDFBlast [ (Herbert) Barr] is an economically important disease in Asian pearl millet production ecologies. The recurrent occurrence of blast in the past one decade has caused enormous strain on grain and forage production. Identification of resistance genes is an important step to develop durable varieties.
View Article and Find Full Text PDFHypergravity is a condition where the force of gravity exceeds that on the surface of the Earth and can be simulated by centrifugation. Previously, a significant increase in root growth phenotype was observed when wheat seeds were exposed to hypergravity (10 g for 12 h). In the present study, we investigated the molecular basis of this change through root transcriptome.
View Article and Find Full Text PDFFunctional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops.
View Article and Find Full Text PDFPre-harvest aflatoxin contamination (PAC) in groundnut is a serious quality concern globally, and drought stress before harvest further exacerbate its intensity, leading to the deterioration of produce quality. Understanding the host-pathogen interaction and identifying the candidate genes responsible for resistance to PAC will provide insights into the defense mechanism of the groundnut. In this context, about 971.
View Article and Find Full Text PDFLate leaf spot (LLS) caused by fungus in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon infection.
View Article and Find Full Text PDFAflatoxin-affected groundnut or peanut presents a major global health issue to both commercial and subsistence farming. Therefore, understanding the genetic and molecular mechanisms associated with resistance to aflatoxin production during host-pathogen interactions is crucial for breeding groundnut cultivars with minimal level of aflatoxin contamination. Here, we performed gene expression profiling to better understand the mechanisms involved in reduction and prevention of aflatoxin contamination resulting from infection in groundnut seeds.
View Article and Find Full Text PDFA total of 60 genotypes of peanut comprising 46 genotypes selected from ICRISAT mini core collection and 14 elite cultivars with differing kernel color and size were used to profile the nutritional parameters such as proximates (moisture, fat, ash, crude protein, crude fiber, carbohydrate content) and nutraceuticals (total polyphenol content and total antioxidant activity). The genotypes showed varied kernel color ranging from white to purple. Kernel skin color was quantified using colorimetry, and the color parameters were expressed as CIELAB color parameters.
View Article and Find Full Text PDFSpatio-temporal and developmental stage-specific transcriptome analysis plays a crucial role in systems biology-based improvement of any species. In this context, we report here the Arachis hypogaea gene expression atlas (AhGEA) for the world's widest cultivated subsp. fastigiata based on RNA-seq data using 20 diverse tissues across five key developmental stages.
View Article and Find Full Text PDFDrought is one of the main constraints in peanut production in West Texas and eastern New Mexico regions due to the depletion of groundwater. A multi-seasonal phenotypic analysis of 10 peanut genotypes revealed C76-16 (C-76) and Valencia-C (Val-C) as the best and poor performers under deficit irrigation (DI) in West Texas, respectively. In order to decipher transcriptome changes under DI, RNA-seq was performed in C-76 and Val-C.
View Article and Find Full Text PDFAspergillus flavus is an opportunistic pathogen of plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress also exacerbates aflatoxin production by A. flavus.
View Article and Find Full Text PDFA mapping population of recombinant inbred lines (RILs) derived from TMV 2 and its mutant, TMV 2-NLM was employed for mapping important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut. Single nucleotide polymorphism and copy number variation using RAD-Sequencing data indicated very limited polymorphism between TMV 2 and TMV 2-NLM. But phenotypically they differed significantly for many taxonomic and productivity traits.
View Article and Find Full Text PDFAflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) are the most abundant DNA sequence variation in the genomes which can be used to associate genotypic variation to the phenotype. Therefore, availability of a high-density SNP array with uniform genome coverage can advance genetic studies and breeding applications. Here we report the development of a high-density SNP array 'Axiom_Arachis' with 58 K SNPs and its utility in groundnut genetic diversity study.
View Article and Find Full Text PDFThe infection of maize and peanut with and subsequent contamination with aflatoxin pose a threat to global food safety and human health, and is exacerbated by drought stress. Drought stress-responding compounds such as reactive oxygen species (ROS) are associated with fungal stress responsive signaling and secondary metabolite production, and can stimulate the production of aflatoxin by . These secondary metabolites have been shown to possess diverse functions in soil-borne fungi including antibiosis, competitive inhibition of other microbes, and abiotic stress alleviation.
View Article and Find Full Text PDFContamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A.
View Article and Find Full Text PDFSugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks.
View Article and Find Full Text PDF