Publications by authors named "Simone P Niclou"

Computational competitions are the standard for benchmarking medical image analysis algorithms, but they typically use small curated test datasets acquired at a few centers, leaving a gap to the reality of diverse multicentric patient data. To this end, the Federated Tumor Segmentation (FeTS) Challenge represents the paradigm for real-world algorithmic performance evaluation. The FeTS challenge is a competition to benchmark (i) federated learning aggregation algorithms and (ii) state-of-the-art segmentation algorithms, across multiple international sites.

View Article and Find Full Text PDF

The evolution of isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) after standard-of-care therapy remains poorly understood. Here we analyzed matched primary and recurrent GBMs from 59 patients using single-nucleus RNA sequencing and bulk DNA sequencing, assessing the longitudinal evolution of the GBM ecosystem across layers of cellular and molecular heterogeneity. The most consistent change was a lower malignant cell fraction at recurrence and a reciprocal increase in glial and neuronal cell types in the tumor microenvironment (TME).

View Article and Find Full Text PDF

In isocitrate dehydrogenase wildtype glioblastoma (GBM), cellular heterogeneity across and within tumors may drive therapeutic resistance. Here we analyzed 121 primary and recurrent GBM samples from 59 patients using single-nucleus RNA sequencing and bulk tumor DNA sequencing to characterize GBM transcriptional heterogeneity. First, GBMs can be classified by their broad cellular composition, encompassing malignant and nonmalignant cell types.

View Article and Find Full Text PDF

The immunosuppressive nature of the tumor microenvironment poses a significant challenge to effective immunotherapies against glioblastoma (GB). Boosting the immune response is critical for successful therapy. Here, we adopted a cancer gene therapy approach to induce T-cell-mediated killing of the tumor through increased activation of the immune system.

View Article and Find Full Text PDF

Herein, we present an ex vivo approach to study glioblastoma (GBM) cell motility in viable mouse brain slice cultures, closely mimicking in vivo features. We detail the preparation and culturing of mouse brain slices followed by tumor cell injection, allowing for the analysis of different aspects of the cellular migration and invasion process. Our assay facilitates testing diverse perturbations including genetic modifications and treatments in a physiological context.

View Article and Find Full Text PDF

To understand the role of extrachromosomal DNA (ecDNA) amplifications in cancer progression, we detected and classified focal amplifications in 8,060 newly diagnosed primary cancers, untreated metastases and heavily pretreated tumors. The ecDNAs were detected at significantly higher frequency in untreated metastatic and pretreated tumors compared to newly diagnosed cancers. Tumors from chemotherapy-pretreated patients showed significantly higher ecDNA frequency compared to untreated cancers.

View Article and Find Full Text PDF

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials.

View Article and Find Full Text PDF

Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity.

View Article and Find Full Text PDF

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals.

View Article and Find Full Text PDF

Background: The proportion of women among healthcare and biomedical research professionals in neuro-oncology is growing. With changes in cultural expectations and work-life balance considerations, more men aspire to nonfull-time jobs, yet, leadership positions remain dominated by men.

Methods: The European Association of Neuro-Oncology (EANO) disparity committee carried out a digital survey to explore gender balance and actions suitable to promote gender equality.

View Article and Find Full Text PDF

Background: Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs).

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the epigenetic changes in gliomas from 132 patients over time, comparing initial and recurrent tumors in both IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) types.
  • IDHwt gliomas remained stable in their epigenetic profile, while IDHmut gliomas showed a notable decrease in DNA methylation, making their profiles more similar to IDHwt tumors.
  • The research identified HOXD13 as crucial for the evolution of IDHmut tumors and found that treatment led to changes in the tumor microenvironment, like increased blood vessel formation and T-cell presence, mimicking the characteristics of IDHwt gliomas.
View Article and Find Full Text PDF

Metabolic rewiring is essential for cancer onset and progression. We previously showed that one-carbon metabolism-dependent formate production often exceeds the anabolic demand of cancer cells, resulting in formate overflow. Furthermore, we showed that increased extracellular formate concentrations promote the in vitro invasiveness of glioblastoma cells.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS).

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets.

View Article and Find Full Text PDF

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials.

View Article and Find Full Text PDF

The mainstay of treatment for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a part of the standard of care, however, the predictive significance of most of these targets in central nervous system (CNS) tumors remains less well-studied. Despite that, there is increasing use of advanced molecular diagnostics that identify potential targets, and tumor-agnostic regulatory approvals on targets also present in CNS tumors have been granted.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning can work well, but it often struggles to make accurate predictions on new data, which is called out-of-sample generalizability.
  • To solve this problem, researchers are using a method called Federated ML that allows computers to share information about how well they're learning without actually sharing the data itself.
  • In a big study with 71 locations around the world, scientists created a model to help detect brain tumors more accurately, showing a significant improvement compared to older methods and hoping to help with rare illnesses and data sharing in healthcare.
View Article and Find Full Text PDF

Background: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection.

View Article and Find Full Text PDF

Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data.

View Article and Find Full Text PDF

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear.

View Article and Find Full Text PDF

In glioblastoma (GBM), tumour-associated microglia/macrophages (TAMs) represent the major cell type of the stromal compartment and contribute to tumour immune escape mechanisms. Thus, targeting TAMs is emerging as a promising strategy for immunotherapy. However, TAM heterogeneity and metabolic adaptation along GBM progression represent critical features for the design of effective TAM-targeted therapies.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive primary brain tumor characterized by infiltrative growth of malignant glioma cells into the surrounding brain parenchyma. In this study, our analysis of GBM patient cohorts revealed a significantly higher expression of 8 () compared to normal brain tissue and could be associated with impaired patient survival. Increased expression of significantly enhanced migration of two different sphere-forming GBM cell lines.

View Article and Find Full Text PDF