Publications by authors named "Simak Ali"

While Estrogen receptor alpha (ERα)+ breast cancer treatment is considered effective, resistance to endocrine therapy is common. Since ERα is still the main driver in most therapy-resistant tumors, alternative therapeutic strategies are needed to disrupt ERα transcriptional activity. In this work, we position TRIM24 as a therapeutic target in endocrine resistance, given its role as a key component of the ERα transcriptional complex.

View Article and Find Full Text PDF

Kudzu's invasive nature has contributed to its classification as a weed, as it frequently outcompetes native plant species, leading to extensive overgrowth. Efforts to control kudzu have proven challenging, with moderate success using physical or biological agents. In this study, we evaluated the effects of two such control agents, ultraviolet C radiation and , to significantly increase the production of tuberosin, a phytoalexin isoflavone.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly invasive breast cancer subtype that is challenging to treat due to inherent heterogeneity and absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Kinase signaling networks drive cancer growth and development, and kinase inhibitors are promising anti-cancer strategies in diverse cancer subtypes. Kinase inhibitor screens are an efficient, valuable means of identifying compounds that suppress cancer cell growth in vitro , facilitating the identification of kinase vulnerabilities to target therapeutically.

View Article and Find Full Text PDF

Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3).

View Article and Find Full Text PDF

Resistance to endocrine therapies (ET) is common in estrogen receptor (ER)-positive breast cancer, and most relapsed patients die with ET-resistant disease. Although genetic mutations provide explanations for some relapses, mechanisms of resistance remain undefined in many cases. Drug-induced epigenetic reprogramming has been shown to provide possible routes to resistance.

View Article and Find Full Text PDF

Purpose: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied.

Materials And Methods: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing.

Results: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted- < .

View Article and Find Full Text PDF

Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER.

View Article and Find Full Text PDF

Purpose: Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer.

Methods: A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data.

View Article and Find Full Text PDF

Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER.

View Article and Find Full Text PDF

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study and expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas is expressed in keratinocytes entering mitosis, we show that expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3).

View Article and Find Full Text PDF

Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.

View Article and Find Full Text PDF

Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens.

View Article and Find Full Text PDF

Targeted therapy for triple-negative breast cancers (TNBC) remains a clinical challenge due to tumour heterogeneity. Since TNBC have key features of transcriptionally addicted cancers, targeting transcription via regulators such as cyclin-dependent kinase 9 (CDK9) has potential as a therapeutic strategy. Herein, we preclinically tested a new selective CDK9 inhibitor (CDDD11-8) in TNBC using cell line, patient-derived organoid, and patient-derived explant models.

View Article and Find Full Text PDF

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear.

View Article and Find Full Text PDF

Samuraciclib is a selective oral CDK7-inhibitor. A multi-modular, open-label Phase I study to evaluate safety and tolerability of samuraciclib in patients with advanced malignancies was designed (ClinicalTrials.gov: NCT03363893).

View Article and Find Full Text PDF

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis.

View Article and Find Full Text PDF

Background: Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC.

Methods: The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo.

View Article and Find Full Text PDF

Mutations in the estrogen receptor (ESR1) gene are common in ER-positive breast cancer patients who progress on endocrine therapies. Most mutations localise to just three residues at, or near, the C-terminal helix 12 of the hormone binding domain, at leucine-536, tyrosine-537 and aspartate-538. To investigate these mutations, we have used CRISPR-Cas9 mediated genome engineering to generate a comprehensive set of isogenic mutant breast cancer cell lines.

View Article and Find Full Text PDF

Background: We report copy-number profiling by low-pass WGS (LP-WGS) in individual circulating tumour cells (CTCs) for guiding treatment in patients with metastatic breast cancer (MBC), comparing CTC results with mutations detected in circulating tumour DNA (ctDNA) in the same blood samples.

Methods: Across 10 patients with MBC who were progressing at the time of blood sampling and that had >20 CTCs detected by CellSearch, 63 single cells (50 CTCs and 13 WBCs) and 16 cell pools (8 CTC pools and 8 WBC pools) were recovered from peripheral blood by CellSearch/DEPArray™ and sequenced with Ampli1 LowPass technology (Menarini Silicon Biosystems). Copy-number aberrations were identified using the MSBiosuite software platform, and results were compared with mutations detected in matched plasma cfDNA analysed by targeted next-generation sequencing using the Oncomine™ Breast cfDNA Assay (Thermo Fisher).

View Article and Find Full Text PDF

More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER). A clinical challenge of ER BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models.

View Article and Find Full Text PDF

Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes.

View Article and Find Full Text PDF