Publications by authors named "Jorge A Belgodere"

Extracellular matrix (ECM) components are key regulators in breast cancer progression, as ECM remodeling is essential for breast cancer cells to invade into surrounding tissue. This process is characterized by the alignment of fibrillar collagens, breakdown of basement membrane components, and increased interstitial collagen stiffness. In patients with obesity, pre-existing ECM changes, including excessive collagen deposition and heightened matrix stiffness, mimic alterations detected in breast cancer.

View Article and Find Full Text PDF

Kudzu's invasive nature has contributed to its classification as a weed, as it frequently outcompetes native plant species, leading to extensive overgrowth. Efforts to control kudzu have proven challenging, with moderate success using physical or biological agents. In this study, we evaluated the effects of two such control agents, ultraviolet C radiation and , to significantly increase the production of tuberosin, a phytoalexin isoflavone.

View Article and Find Full Text PDF

Improved resolution of stereolithography (SLA) 3D printers is accelerating the rapid prototyping of microdevices and has highlighted the need to evaluate their dimensional accuracy. Optical profilometry using structured light allows for rapid 3D scanning of devices with micrometer resolution but requires part surfaces with sufficient opacity and reflectivity for accurate measurement. Microfluidic devices are often made with transparent materials (e.

View Article and Find Full Text PDF

Naringenin (Nar) is a citrus fruit-derived phytoestrogen, a group of dietary compounds produced by a wide variety of plants. Due to structural similarity to 17-β-estradiol (E2), phytoestrogens can bind to estrogen receptors (ERs) to exert context-dependent estrogenic and/or anti-estrogenic effects. As such, there are potential health benefits and risks associated with phytoestrogen exposure.

View Article and Find Full Text PDF

Legumes are a predominant source of isoflavones, termed phytoestrogens, that mimic 17β-estradiol (E2). Phytoalexins are inducible isoflavones produced in plants subjected to environmental stressors (e.g.

View Article and Find Full Text PDF

With the increase in decellularization of different tissue sources, an understanding of the viscoelastic properties of these soft materials is important for determining practical applications. The purpose of this chapter is to better define a series of experiments to profile important rheological properties for adipose-based hydrogels. While there are numerous mechanical characterizations that are done experimentally, the protocol outlined in this chapter provides a step-wise approach to determine the gelation characteristics and native hydrogel network properties.

View Article and Find Full Text PDF

Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically.

View Article and Find Full Text PDF

Sperm motility analysis of aquatic model species is important yet challenging due to the small sample volume, the necessity to activate with water, and the short duration of motility. To achieve standardization of sperm activation, microfluidic mixers have shown improved reproducibility over activation by hand, but challenges remain in optimizing and simplifying the use of these microdevices for greater adoption. The device described herein incorporates a novel micromixer geometry that aligns two sperm inlet streams with modified herringbone structures that split and recombine the sample at a 1:6 dilution with water to achieve rapid and consistent initiation of motility.

View Article and Find Full Text PDF

Hydrogels are 3D scaffolds used as alternatives to in vivo models for disease modeling and delivery of cells and drugs. Existing hydrogel classifications include synthetic, recombinant, chemically defined, plant- or animal-based, and tissue-derived matrices. There is a need for materials that can support both human tissue modeling and clinically relevant applications requiring stiffness tunability.

View Article and Find Full Text PDF

Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization.

View Article and Find Full Text PDF

The application of engineered biomaterials for wound healing has been pursued since the beginning of tissue engineering. Here, we attempt to apply functionalized lignin to confer antioxidation to the extracellular microenvironments of wounds and to deliver oxygen from the dissociation of calcium peroxide for enhanced vascularization and healing responses without eliciting inflammatory responses. Elemental analysis showed 17 times higher quantity of calcium in the oxygen-releasing nanoparticles.

View Article and Find Full Text PDF

The use of 3-dimensional (3-D) printing is gaining popularity in life sciences and driving innovation in fields including aquatic sperm cryopreservation. Yet, little is known about the effects leachates from these objects may have on biological systems. In this study, we investigated if exposure to leachates from 3-D printed objects fabricated from different photo-curable resins could affect sperm quality in two model fish species, zebrafish (Danio rerio) and goldfish (Carassius auratus).

View Article and Find Full Text PDF

Accurate determination of sperm concentration in aquatic species is important for assisted reproduction and cryopreservation, yet is challenging as current counting methods are costly or not suitable for many species. The goal of this work was to develop a simple (single-piece and single-layer photolithography) sperm counting chamber (SSCC) for aquatic species. Goldfish ( and zebrafish () sperm were used for evaluation in the device, which was created with soft lithography.

View Article and Find Full Text PDF

Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control.

View Article and Find Full Text PDF

Objective: Build a microlaryngoscopy surgical simulator for endoscopic laryngeal surgery using standard microsurgical instruments and a CO laser.

Study Design: Anatomical modeling, CAD design and 3D printed manufacturing.

Subjects And Methods: We created a modular design for a microlaryngoscopy simulator in CAD software.

View Article and Find Full Text PDF

Adipose tissue is characterized as an endocrine organ that acts as a source of hormones and paracrine factors. In diseases such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression. Young individuals with estrogen receptor-alpha positive (ER-α) breast cancer (BC) have an increased resistance to endocrine therapies, suggesting that alternative estrogen signaling is activated within these cells.

View Article and Find Full Text PDF

Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics.

View Article and Find Full Text PDF

Genetic resources of aquatic species are of tremendous value, but worldwide these are maintained almost exclusively as live populations. This is extremely expensive and insecure, and largely results from a pervasive lack of production capability, quality management, and reproducibility in cryopreservation that are barriers in development of germplasm repositories. Community-based technology approaches are emerging that can stimulate research previously limited by a lack of affordable, customizable equipment.

View Article and Find Full Text PDF

Hydroxyapatite (HA)-coated metals are biocompatible composites, which have potential for various applications for bone replacement and regeneration in the human body. In this study, we proposed the design of biocompatible, flexible composite implants by using a metal mesh as substrate and HA coating as bone regenerative stimulant derived from a simple sol-gel method. Experiments were performed to understand the effect of coating method (dip-coating and drop casting), substrate material (titanium and stainless steel) and substrate mesh characteristics (mesh size, weave pattern) on implant's performance.

View Article and Find Full Text PDF

We report the use of phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol) (PEG)-based scaffolds. Chemoselective thiol-ene chemistry was utilized to form composites with thiolated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA). Antioxidant properties of TLS were not altered after thiolation and the levels of antioxidation were comparable to those of -ascorbic acid.

View Article and Find Full Text PDF

Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in a plant tissue, we found that sodium lignosulfonate (SLS) and an alkali-extracted lignin from switchgrass (SG) increased the stiffness of Col I gels. SLS and SG enhanced the stiffness of Col I gels from 52 to 670 Pa and 52 to 320 Pa, respectively, and attenuated shear-thinning properties, with the formulation of 1.

View Article and Find Full Text PDF

Printing of polymeric composites into desired patterns and shapes has revolutionized small-scale manufacturing processes. However, high-resolution printing of adaptive materials that change shape in response to external stimuli remains a significant technical challenge. The article presents a new approach of printing thermoresponsive poly(N-isopropylacrylamide) into macroscopic structures that dynamically reconfigure in response to heating and cooling cycles.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment.

View Article and Find Full Text PDF