We introduce an advanced turbulence spectrum model developed from mathematical foundations from a covariance function class and empirically validated using extensive field data. This model captures the complex dynamics of long-range dependence, and fractal characteristics prevalent in riverine and atmospheric boundary layer (ABL) flows that are ignored by classical spectrum models, such as IEC (International Electrotechnical Commission) von Kármán and Kaimal model. The model delineates scaling behaviors across distinct frequency bands and offers substantial flexibility through five well-defined parameters each characterizing a distinct physical aspect of the velocity time series.
View Article and Find Full Text PDFRecent advances in passive flying systems inspired by wind-dispersed seeds contribute to increasing interest in their use for remote sensing applications across large spatial domains in the Lagrangian frame of reference. These concepts create possibilities for developing and studying structures with performance characteristics and operating mechanisms that lie beyond those found in nature. Here, we demonstrate a hybrid flier system, fabricated through a process of controlled buckling, to yield unusual geometries optimized for flight.
View Article and Find Full Text PDFBiofouling poses significant challenges for marine transportation due to increased skin drag, which results in increased fuel cost and associated [Formula: see text] emissions. Current antifouling methods involving polymer coating, biocides, and self-depleting layers harm marine ecosystems and contribute to marine pollution. Significant advancements have resulted in using bioinspired coatings to address this issue.
View Article and Find Full Text PDFRecently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature.
View Article and Find Full Text PDFPassive filtering is a common strategy to reduce airborne disease transmission and particulate contaminants across scales spanning orders of magnitude. The engineering of high-performance filters with relatively low flow resistance but high virus- or particle-blocking efficiency is a non-trivial problem of paramount relevance, as evidenced in the variety of industrial filtration systems and face masks. Next-generation industrial filters and masks should retain sufficiently small droplets and aerosols while having low resistance.
View Article and Find Full Text PDFCoronavirus Disease 2019 (COVID-19) may spread through respiratory droplets released by infected individuals during coughing, sneezing, or speaking. Given the limited supply of professional respirators and face masks, the U.S.
View Article and Find Full Text PDFPhys Rev E
December 2019
The flow and drag induced by active pitching of plates in the wake of a cylinder of diameter d were experimentally studied for various plate lengths L as well as pitching frequencies f_{p} and amplitudes A_{0} at Reynolds number Re=1.6×10^{4}. Planar particle image velocimetry and a load cell were used to characterize the flow statistics and mean drag of a variety of cylinder-splitter assemblies.
View Article and Find Full Text PDF