Publications by authors named "Shujun Xing"

While chimeric antigen receptor (CAR) T cell therapy is highly effective for hematological malignancies, its widespread use is limited by complex, patient-specific manufacturing. Universal CAR-T (UCAR-T) cells, derived from allogeneic donors, offer a potential "off-the-shelf" solution. However, their clinical translation hinges on overcoming two key immunological barriers: graft-versus-host disease (GvHD) and host-versus-graft rejection (HvGR), which compromise safety and therapeutic persistence.

View Article and Find Full Text PDF

Background: Malignant peripheral nerve sheath tumors (MPNSTs), which arise from peripheral nerves or cells associated with nerve sheaths, are uncommon and biologically aggressive sarcomas. Currently, immune checkpoint inhibitors (ICIs) have exhibited antitumor efficiency in various sarcomas. However, there have been few reports on the clinical features and treatment response of ICIs in MPNSTs.

View Article and Find Full Text PDF

The LEAP trial series examining the synergy of pembrolizumab and lenvatinib across various cancers has yielded mixed results, highlighting the need for a more detailed understanding of combination therapies. By learning from these trials, we aim to advance the clinical development of more effective combination strategies to improve patient outcomes.

View Article and Find Full Text PDF

Three-dimensional (3D) light-field displays can provide natural stereoscopic visual perception and an intuitive viewing experience. However, the high production threshold and the lack of user-friendly editing tools for light-field images make it difficult to efficiently and conveniently generate 3D light-field content that meets various needs. Here, a text-driven light-field content editing method for 3D light-field display based on Gaussian splatting is presented.

View Article and Find Full Text PDF

Three-dimensional (3D) light-field display technology can reconstruct the spatial characteristics of 3D scenes and provide users with an immersive visual experience without the need for any additional external devices. Here, an arbitrary stylized light-field generation method for 3D light-field displays is presented, and the tripartite constraints are addressed by conducting style transformation in a refined feature space. A multi-dimensional feature refinement module is designed to learn which aspects and regions should be prioritized within the high-level feature grid of the scene, which allows content and style patterns to be better matched and blended.

View Article and Find Full Text PDF

Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis.

View Article and Find Full Text PDF

Tumor neoantigens possess specific immunogenicity and personalized therapeutic vaccines based on neoantigens which have shown promising results in some clinical trials, with broad application prospects. However, the field is developing rapidly and there are currently few relevant review articles. Summarizing and analyzing the status of global personalized neoantigen vaccine clinical trials will provide important data for all stakeholders in drug development.

View Article and Find Full Text PDF

T-cell receptor therapy (TCR-T) has demonstrated efficacy, durability, and safety advantages in certain solid tumors (such as human papillomavirus-related tumors, synovial sarcoma, and melanoma). This study aimed to provide careful considerations for developing TCR-T for solid tumors. Therefore, in this review, we have summarized the current clinical application, advantage of TCR-T modalities and explored efficacy/safety-related parameters, particularly avidity, pharmacokinetics/pharmacodynamics, and indications, for solid tumors.

View Article and Find Full Text PDF

Objective: The study was designed to develop and validate a new drug clinical trial participation feelings questionnaire (DCTPFQ) for cancer patients.

Methods: Data collection and analysis involved a combination of qualitative and quantitative methods. There were two phases to this study.

View Article and Find Full Text PDF

The purpose of this study was to present the preliminary results of the PLATFORM Study, which aimed to evaluate the effectiveness of precision treatment for rare tumors in China. This study involved a phase II, open-label, non-randomized, multi-arm, single-center clinical trial. Patients with advanced rare solid tumors, who had not responded to standard treatment, were enrolled.

View Article and Find Full Text PDF

The current status of clinical trials utilizing nanoparticle drug delivery system (NDDS) for brain tumors was summarized.Image 1.

View Article and Find Full Text PDF

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development.

View Article and Find Full Text PDF

With the development of three-dimensional (3D) light-field display technology, 3D scenes with correct location information and depth information can be perceived without wearing any external device. Only 2D stylized portrait images can be generated with traditional portrait stylization methods and it is difficult to produce high-quality stylized portrait content for 3D light-field displays. 3D light-field displays require the generation of content with accurate depth and spatial information, which is not achievable with 2D images alone.

View Article and Find Full Text PDF

Overall survival (OS) is considered the standard clinical endpoint to support effectiveness claims in new drug applications globally, particularly for lethal conditions such as cancer. However, the source and reliability of OS in the setting of clinical trials have seldom been doubted and discussed. This study first raised the common issue that data integrity and reliability are doubtful when we collect OS information or other time-to-event endpoints based solely on simple follow-up records by investigators without supporting material, especially since the 2019 COVID-19 pandemic.

View Article and Find Full Text PDF

Three-Dimensional (3D) light-field display has achieved promising improvement in recent years. However, since the dense-view images cannot be collected fast in real-world 3D scenes, the real-time 3D light-field display is still challenging to achieve in real scenes, especially at the high-resolution 3D display. Here, a real-time 3D light-field display method with dense-view is proposed based on image color correction and self-supervised optical flow estimation, and a high-quality and high frame rate of 3D light-field display can be realized simultaneously.

View Article and Find Full Text PDF

Accurate, fast, and reliable modeling and optimization methods play a crucial role in designing light field display (LFD) system. Here, an automatic co-design method of LFD system based on simulated annealing and visual simulation is proposed. The process of LFD content acquisition and optical reconstruction are modeled and simulated, the objective function for evaluating the display effect of the LFD system is established according to the simulation results.

View Article and Find Full Text PDF

KRAS is the most commonly mutated oncogene in human cancers. Targeted therapy and immunotherapy for this gene have made remarkable progress in recent years. However, comprehensive molecular landscape analysis of KRAS in rare tumors is lacking.

View Article and Find Full Text PDF

Three-Dimensional (3D) light-field display plays a vital role in realizing 3D display. However, the real-time high quality 3D light-field display is difficult, because super high-resolution 3D light field images are hard to be achieved in real-time. Although extensive research has been carried out on fast 3D light-field image generation, no single study exists to satisfy real-time 3D image generation and display with super high-resolution such as 7680×4320.

View Article and Find Full Text PDF

Bispecific antibodies (bsAb) that target two independent epitopes or antigens have been extensively explored in translational and clinical studies since they were first developed in the 1960s. Many bsAbs are being tested in clinical trials for treating a variety of diseases, mostly cancer. Here, we provide an overview of various types of bsAbs in clinical studies and discuss their targets, safety profiles, and efficacy.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Shujun Xing"

  • - Shujun Xing's recent research focuses on innovative cancer treatment strategies, particularly exploring personalized neoantigen vaccines, T-cell receptor therapies, and the application of traditional Chinese medicine to enhance immunotherapy efficacy.
  • - The findings predominantly highlight the promising potential of therapies targeting tumor-specific antigens and the importance of clinical trial analysis to guide future drug development efforts.
  • - Xing's work also addresses the need for patient-centric measures, such as the development of questionnaires to assess cancer patients' feelings toward clinical trial participation, emphasizing both therapeutic efficacy and patient experience in oncology.