The female mosquito's remarkable ability to hunt humans and transmit pathogens relies on her unique biology. Here, we present the Mosquito Cell Atlas (MCA), a comprehensive single-nucleus RNA sequencing dataset of more than 367,000 nuclei from 19 dissected tissues of adult female and male , providing cellular-level resolution of mosquito biology. We identify novel cell types and expand our understanding of sensory neuron organization of chemoreceptors to all sensory tissues.
View Article and Find Full Text PDFInfect Dis Poverty
November 2024
Background: Genetic biocontrol interventions targeting mosquito-borne diseases require the release of male mosquitoes exclusively, as only females consume blood and transmit pathogens. Releasing only males eliminates the risk of increasing mosquito bites and spreading pathogens while enabling effective population control. The aim of this study is to develop robust sex-sorting methods for early larval stages in mosquitoes, enabling scalable male-only releases for genetic biocontrol interventions.
View Article and Find Full Text PDFGenetic biocontrol interventions targeting mosquito-borne diseases require the release of male mosquitoes exclusively, as only females consume blood and transmit human pathogens. This reduces the risk of spreading pathogens while enabling effective population control. Robust sex sorting methods to enable early larval sorting in mosquitoes need to be developed to allow for scalable sex sorting for genetic biocontrol interventions.
View Article and Find Full Text PDFOnly female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression.
View Article and Find Full Text PDFMosquito-borne illnesses represent a significant global health peril, resulting in approximately one million fatalities annually. West Nile, dengue, Zika, and malaria are continuously expanding their global reach, driven by factors that escalate mosquito populations and pathogen transmission. Innovative control measures are imperative to combat these catastrophic ailments.
View Article and Find Full Text PDFOnly female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression.
View Article and Find Full Text PDFInsect Biochem Mol Biol
April 2023
Binding immunoglobulin protein (BiP, also known as GRP78), a chaperone and master regulator of the unfolded protein response (UPR) pathway, plays an essential role in several flavivirus infections, but its functional role in regulating dengue virus replication in the mosquito remains largely unknown. We here demonstrated the interaction between a dengue virus serotype 2 (DENV2) and BiP in Aedes aegypti and report the discovery of a novel functional role of BiP in mosquito vitellogenesis. Silencing Ae.
View Article and Find Full Text PDFFront Microbiol
April 2022
Small ubiquitin-like modifier (SUMO) is a reversible post-translational protein modifier. Protein SUMOylation regulates a wide variety of cellular processes and is important for controlling virus replication. Earlier studies suggest that dengue virus envelope protein interacts with Ubc9, the sole E2-conjugating enzyme required for protein SUMOylation in mammalian cells.
View Article and Find Full Text PDFInsect Biochem Mol Biol
March 2022
Incidence of dengue virus (DENV) and Zika virus (ZIKV), two mosquito-borne flaviviruses, is increasing in large parts of the world. Vaccination and medication for these diseases are unsatisfactory. Here, we developed a novel antiviral approach, using a virus-inducible gene expression system, to block virus replication and transmission.
View Article and Find Full Text PDFParasit Vectors
July 2021
Background: Dengue fever is the most rapidly spreading mosquito-borne viral disease globally. More than 2.5 billion people live in dengue-endemic areas.
View Article and Find Full Text PDFComplement-like proteins in arthropods defend against invading pathogens in the early phases of infection. Thioester-containing proteins (TEPs), which exhibit high similarity to mammalian complement C3, are thought to play a key role in the innate immunity of arthropods. We identified and characterized anti-dengue virus (DENV) host factors, in particular complement-like proteins, in the mosquito .
View Article and Find Full Text PDFcauses waterborne diarrhoea by transmission of infective cysts. Three cyst wall proteins are highly expressed in a concerted manner during encystation of trophozoites into cysts. However, their gene regulatory mechanism is still largely unknown.
View Article and Find Full Text PDFAquaporin-2 (AQP2) is a molecular water channel protein responsible for water reabsorption by the kidney collecting ducts. Many water balance disorders are associated with defects in AQP2 gene expression regulated by the peptide hormone vasopressin. Here, we studied roles of Elf3 (E26 transformation-specific (Ets)-related transcription factor 3) in AQP2 gene expression in the collecting duct cells (mpkCCD).
View Article and Find Full Text PDFInsect Biochem Mol Biol
August 2019
Although dengue is the most prevalent arthropod-borne viral disease in humans, no effective medication or vaccine is presently available. Previous studies suggested that mosquito salivary proteins influence infection by the dengue virus (DENV) in the mammalian host. However, the effects of salivary proteins on DENV replication within the Aedes aegypti mosquito remain largely unknown.
View Article and Find Full Text PDFMosquitoes are significant vectors, responsible for transmitting serious infectious diseases, including the recent epidemics of global significance caused by, for example, Zika, Dengue and Chikungunya viruses. The chemical insecticides in use for mosquito control are toxic and ineffective due to the development of resistance to them. The new approach to reduce mosquito population by releasing genetically modified males to cause female infertility is still under environmental safety evaluation.
View Article and Find Full Text PDFPLoS Negl Trop Dis
March 2018
The Notch signaling pathway is a highly evolutionarily-conserved cell-cell signaling pathway that regulates many events during development. It plays a pivotal role in the regulation of fundamental cellular processes, such as cell proliferation, stem cell maintenance, and differentiation during embryonic and adult development. However, functions of Notch signaling in Aedes aegypti, the major mosquito vector for dengue, are largely unknown.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2017
[This corrects the article DOI: 10.1371/journal.pntd.
View Article and Find Full Text PDFInsect Biochem Mol Biol
June 2015
The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis.
View Article and Find Full Text PDFPLoS Negl Trop Dis
November 2013
The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms.
View Article and Find Full Text PDFAutophagy has been shown to facilitate replication or production of hepatitis C virus (HCV); nevertheless, how HCV induces autophagy remains unclear. Here, we demonstrate that HCV nonstructural protein 4B (NS4B) alone can induce autophagy signaling; amino acid residues 1 to 190 of NS4B are sufficient for this induction. Further studies showed that the phosphorylation levels of S6K and 4E-BP1 were not altered, suggesting that the mTOR/S6 kinase pathway and mTOR/4E-BP1 pathway did not contribute to NS4B- or HCV-induced autophagy.
View Article and Find Full Text PDF